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Abstract
We study the exit decision of duopolists from a stochastically declining

market. Over time, firms privately learn about the market conditions from
observing the stochastic arrival of customers. Exit decisions are publicly ob-
served; thus the model features both observational and private learning. A
larger firm is more likely to have customers and hence has better information
about the market conditions than does a smaller rival. We provide sufficient
conditions for either the smaller or the larger firm to be the first to exit the
market in the unique equilibrium. Because of observational learning, exiting
may be a firm’s dominant action since continuing operation would bring too
much good news to the rival, leading it to further postpone its exit. Uniqueness
then follows from iterated conditional dominance.
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1 Introduction

Divestment is an important component of a firm’s strategy,1 and contributes to
shaping the evolution of the market structure of many industries, one of the cen-
tral objects of study in industrial organization. Furthermore, confidential business
information has been recognized to play a key role in market competition by, for
example, the Federal Trade Commission.2 We study the role of private learning in
a strategic exit model, which has thus far received little attention. Specifically, our
paper sets up a parsimonious model which can contribute to explaining why the
type of firm exiting varies from industry to industry.

The empirical evidence on exit from a declining industry has shown that the
relationship between firm size and exit patterns varies across industries and may
depend on industry-specific characteristics. Some studies have found higher rates
of exit for small firms (see, for example, Lieberman, 1990). Other studies have
documented that in mature stages of the industry life cycle, and particularly in
technically advanced industries, smaller-scale firms are not necessarily confronted
with a lower likelihood of survival than their larger counterparts (see Agarwal and
Audretsch, 2001).

The theoretical literature has modeled strategic exit from a declining industry
using the war of attrition paradigm, predicting that a stronger firm can force a
weaker firm to exit first. Starting with the seminal contributions of Ghemawat and
Nalebuff (1985), Fudenberg and Tirole (1986), and Fine and Li (1989) (see also
Murto, 2004), most papers have identified a firm’s strength with its profit flow: a
firm is stronger than its competitor if its profit flow is greater.

To the best of our knowledge, no existing model explains why in some cases, the
firm that survives the industry decline has the lowest profit flow. However, when a
firm privately learns about the profitability of the industry, for example, from sales
data, its strategy—whether to exit—conveys information to its competitor. As a
result, a firm’s relative strength is determined not only by its profit flow but also by
the information externalities generated by its actions.

1A study by Accenture (Anslinger et al., 2003) predicted that “for the next years, many com-
panies will give far more thought to divestitures than they did in the late 1990s.”

2See, for example, the FTC order designed to remedy the anti-competitive
effects resulting from Broadcom Limited’s acquisition of Brocade Communica-
tions Systems, https://www.ftc.gov/enforcement/cases-proceedings/171-0027/
broadcom-limitedbrocade-communications-systems
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To model dynamic selection in a declining industry, we consider an irreversible
timing game. Initially, each duopolist earns positive expected profits; the industry
randomly, and unbeknownst to either firm, transitions to a declining stage of its life
cycle. In this declining stage, the duopoly loses viability because the expected profit
of each duopolist becomes negative. Firms privately learn about the profitability of
the industry by observing their customer arrivals. We focus on the case in which
firms are asymmetric in that they have different customer arrival rates and hence
learn at different speeds. Since customer arrivals are privately observed and exit
decisions are public, the model features both private and observational learning,
akin to an incomplete information war of attrition.

As a first step, we show that there always exists an equilibrium in which one
of the two firms exits first with probability one. To determine which firm survives,
we consider each firm’s best reply to the other firm never exiting. In our model,
the first exit time when playing this best reply3 determines a firm’s strength. The
smaller the first exit time is, the weaker the firm. There always exists an equilibrium
in which the weaker firm exits first with probability one, acting solely on the basis
of its private information, and never learns anything from the stronger firm.

There is a non-monotone relationship between the speed of private learning—
or, equivalently, the firm’s expected profit flow, a proxy for size—and the firm’s
strength in the war of attrition—or, equivalently, its first exit time. The non-
monotone relationship arises because of two countervailing forces. On the one hand,
the higher the customer arrival rate is, the faster the firm becomes pessimistic about
the market conditions if no customer arrives. On the other hand, the higher the
customer arrival rate is, the higher the expected profit flow, and the stronger the
incentive to remain in the market for any belief regarding the state of the industry.

Intuitively, the stronger firm has incentives to wait for the news revealed at the
weaker firm’s first exit time. In addition, if the weaker firm does not exit at that
time, the stronger firm’s incentive to remain in the market is reinforced. The weaker
firm, by staying in the market, sends a signal that is against its own interest and that
makes the stronger firm more optimistic about the market conditions—however, in
equilibrium, it cannot avoid doing so. As a result, the weaker firm is discouraged
from remaining in the market longer compared to the case in which it expects never
to enjoy monopoly profits nor to benefit from observing the other firm’s action.

3The first exit time is the earliest time when the firm exits with positive probability along the
path induced by the best reply.
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We then provide sufficient conditions for the equilibrium in which the weaker
firm exits first to be the unique equilibrium of the game. In light of the non-
monotonicity between a firm’s customer arrival rate and its strength, in the unique
equilibrium, either the larger or the smaller firm survives the industry decline. As
both predictions have received some empirical support, our model sheds light on how
industry characteristics can affect the equilibrium outcome. Roughly, if there is a
high degree of uncertainty, i.e., both firms have little information about the market
conditions, then the smaller firm exits first with probability one; if the larger firm
has (sufficiently) precise information, it exits first with probability one.

Technically, our proof of equilibrium uniqueness relies on iterated deletion of
(conditionally) dominated strategies à la Shimoji and Watson (1998). In principle,
to identify dominated strategies, one needs to compute the beliefs of a firm for
any given strategy of the rival. This computation proves to be difficult in our setup
because higher-order beliefs play a key role, not only because a firm needs to forecast
its opponent’s action but also because firms’ private signals are correlated. Standard
techniques do not apply: since the underlying state of the world evolves over time,
it is not possible to simplify the dynamic inference problem by decomposing the
posterior belief into two single-dimensional statistics, i.e., a private belief and a
public belief, such as in Foster and Viswanathan (1996) or Rosenberg, Solan, and
Vieille (2007), as discussed in Section 4.2.

Our approach is radically different; we provide a recursive lower bound on a
firm’s posterior belief about the prevailing state in any equilibrium of the game.
We believe that this approach can be applied to other models with private learning
or private monitoring. In a first step, we compute a lower bound on the stronger
firm’s posterior belief conditional on the weaker firm not using a strictly dominated
strategy. In a second step, we use this lower bound to identify an initial interval
of time when continuing operations is a conditionally dominant strategy for the
stronger firm, irrespective of its private history. In a third step, we show that
exiting is initially dominant for the weaker firm whenever the time elapsed since
last observing a customer is sufficiently long.

Our model relies on the canonical exponential bandit framework with inconclu-
sive good news. In our proof of equilibrium uniqueness, we start by showing that in
the special case of conclusive news, that is, the case in which no customer arrives in
the declining phase of the industry, the stronger firm’s inference problem exhibits a
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recursive structure, which allows us to generalize the dominance argument to count-
ably many rounds of deletion, concluding that the stronger firm never exits first in
equilibrium.

Inconclusive news disrupts the recursive properties of the inference problem.
Our proof relies instead on a limit argument. In the limit, as the weaker firm’s
information becomes arbitrarily precise, along any history, the stronger firm bases
its inference only on observational learning, allowing us to conclude that there exists
a unique equilibrium. Moreover, we show that introducing asymmetry in other
dimensions such as the discount rate, cost, or revenue does not change our main
results.

1.1 Literature Review

Our work is closely related to the theoretical literature analyzing exit through the
lens of the war of attrition paradigm. Ghemawat and Nalebuff (1985, 1990) study
disinvestment in declining industries when demand shrinks deterministically over
time. Applying a backward induction argument, Ghemawat and Nalebuff (1985)
show that in the unique equilibrium the larger firm exits first because it is unable
to adjust capacity and loses viability more quickly: in their model, the smaller firm
is “stronger” in that when left alone, it remains profitable for longer. To say it
differently, in Ghemawat and Nalebuff (1985), the smaller firm enjoys a larger profit
flow. Murto (2004) shows that the main insights of Ghemawat and Nalebuff (1985)
carry over to the case of stochastic market decline and a general payoff structure,4

and there always exists an equilibrium in which the firm with the lowest expected
profit flow exits first. In contrast to our model, in Murto (2004) signals about
the underlying uncertainty, which is modeled as a geometric Brownian motion, are
public, precluding signaling effects.

Incomplete information in a war of attrition has been studied in Fudenberg and
Tirole (1986), who characterize the unique equilibrium of the exit game when firms
have private information about their outside option or their cost. In contrast to
Fudenberg and Tirole (1986), in our model information is interdependent; thus,
higher-order beliefs are relevant not only to form beliefs about the strategy of the
opponent but also to assess the prevailing state of the world. Takahashi (2015)
empirically estimates the model of Fudenberg and Tirole (1986) using the US movie

4See also the discrete-time model of Fine and Li (1989).
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theater industry to quantify the welfare loss from strategic delay. In the same spirit,
our paper provides a tractable framework to estimate the welfare implications of
observational learning in the presence of interdependent private information.

Within the broader literature on stopping games, our paper is closely related
to Rosenberg, Solan, and Vieille (2007) and Murto and Välimäki (2011). While
these papers are concerned with different questions, they feature, similar to ours,
observational learning and irreversible action, but they do not incorporate payoff
externalities. In contrast, Hopenhayn and Squintani (2011) and Gorno and Iachan
(2020) feature independent private information and payoff externalities.

It is well known that in non-zero-sum games, receiving additional information
can be to a player’s advantage but also to his detriment (see, for example, Maschler
et al., 2013, Ch. 5.7). Recently, Awaya and Krishna (2021) show that information
can be a strategic disadvantage in an R&D race with private information. Under
some parametric restrictions, in the unique equilibrium, the better-informed firm
exits the race more frequently and has lower payoffs.5 Relatedly, Moscarini and
Squintani (2010) investigate the role of private information in a winner-take-all R&D
race in a model that, barring the technical details of the information structure, is
identical to that of Awaya and Krishna (2021). In Awaya and Krishna (2021),
conditionally on the innovation being unfeasible, rivalry disappears as neither of the
firms benefits from remaining in the race. In contrast, our model can account for
the case in which a monopolist always enjoys positive profits. We show that even
in this case, the firm with the largest profit flow and the more precise information
is the first to exit in the unique equilibrium.

In our model, firms are not only asymmetric in their information, but also in
their payoffs. As in canonical models of market experimentation, customers bring
both information and revenues; this assumption is intended to capture a positive
correlation between a firm’s quality of information and its profit flow. The question
is whether the strategic disadvantage generated by having more precise information
can outweigh the benefit from a higher payoff and thereby overturn the prediction in
the existing literature (e.g., Ghemawat and Nalebuff, 1985 and Murto, 2004), that
is, that the firm with the lowest profit flow exits first. We address this question

5Similarly, Chen and Ishida (2021) study an asymmetric war of attrition with independent types
and dynamic private learning and show that in some equilibria the less-efficient firm wins more
often. See also Kim and Lee (2014), who study the effect of information acquisition in a war of
attrition.
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by identifying the appropriate notion of strength and showing that the relationship
between strength and the speed of private learning is non-monotone, specifically, it
is single-peaked.

Our model is also related to the literature on strategic experimentation with
exponential bandits. As in Keller and Rady (2010), firms learn via inconclusive
good news, but as in Keller and Rady (1999, 2003), the underlying state of the
world changes over time.6 Chen (2020), Rosenberg, Salomon, and Vieille (2013)
and Heidhues, Rady, and Strack (2015), who analyze experimentation models with
private learning, are also related to our work.

1.2 Structure of the Paper

The remainder of the paper is organized as follows. Section 2 describes the model.
Section 3 analyzes two public learning benchmarks, the case of observable decline
and the case of publicly observable customers, and gives a preview of the main
results. Section 4 is devoted to the main results. Section 5 concludes. All proofs
are provided in the Appendix and Online Appendix.

2 Model

Time is continuous and the horizon is infinite, t ∈ [0,∞). Two firms decide when
to irreversibly exit a declining industry. Each firm’s present discounted payoff from
exiting the industry is normalized to 0.

The industry’s profitability is determined by a state of the world ωt that can be
either good or bad, ωt ∈ {G,B}. Initially, both firms attach probability one to the
industry being profitable, ω0 = G. The industry irreversibly becomes unprofitable,
unbeknownst to the two firms, at some random time that is exponentially distributed
with parameter γ > 0.7

Each active firm serves a stream of randomly arriving customers. In a duopoly,
that is, as long as both firms are active, the customers of firm i arrive according

6See also Khromenkova (2018).
7Our model generalizes to the case of γ = 0 and interior prior about the state of the world

ω0 and to the case in which the transition to the bad state is not irreversible, provided that the
transition rate from the bad to the good state is low enough. Moreover, the assumption that the
distribution of the time when the state transitions is exponential is convenient but not essential.
The results can easily be generalized, for example, to any distribution with a bounded hazard rate.
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to an inhomogeneous Poisson process with intensity λiωt , where λ
i
G > λiB ≥ 0. In a

monopoly, that is, after firm j exits, the customers of firm i arrive at a rate λ1
ωt+λ

2
ωt .

Each firm privately observes its customer arrivals, while exit decisions are public.
While active, each firm bears a flow cost c, and each customer yields a lump-

sum revenue R. Firms discount the future at a common rate r > 0. We impose the
following parametric assumptions.8

Assumption 1. For i = 1, 2, λiBR− c < 0 .

Assumption 1 states that a duopolist’s flow payoff is negative whenever ωt = B:
this ensures that it can be optimal to exit. Furthermore, we assume that λ1

B =

λ2
B = λB, even if the assumption is not crucial for the main results, as discussed in

Section 4.4.
After one of the firms has exited, the remaining firm enjoys monopoly profits

until it also finds it optimal to exit, if ever. In fact, our model can accommodate
both the case in which a monopolist’s profit is always profitable and the case in
which a monopolist’s profit is negative whenever ωt = B, that is, 2λBR− c ≶ 0.

Given a strategy profile (σ1, σ2), the payoff of firm i can be written as:

E(σ1,σ2)

[∫ σi

0

e−rt
(
λiωtR + 1{σj<t}λ

j
ωtR− c

)
dt

]
. (1)

We focus on perfect Bayesian equilibria of the stochastic timing game. However,
we do not explicitly specify beliefs and behavior off the equilibrium path because
they play no role in sustaining on-path behavior, as argued in the Supplementary
Appendix.9

As in canonical bandit models (e.g., Rothschild, 1974), customers bring revenue
and information. Interpreting the customer arrival rate as a proxy for the size of the
firm, conceptually, our results rely on the positive correlation between the expected
profit of a firm and the precision of its information. For example, one could argue
that a larger firm enjoys higher profits because of higher markups and economies of

8We could allow the flow cost to depend on the presence of a competitor, as long as the
expected profit conditional on the state is strictly higher in a monopoly than that in a duopoly.
For a discussion on asymmetries, see Section 4.4.

9In the Supplementary Appendix of Cetemen and Margaria (2021), we show that any Nash
equilibrium is outcome-equivalent to a perfect Bayesian equilibrium.
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scale,10 and that it has more precise information as a result of a more sophisticated
market research department.

3 Benchmarks

To place our results into perspective, we start by discussing two benchmarks. In
the first benchmark, the state transition is observable. In the second, firms do not
observe the state transition, but they observe one anothers’ customers.

3.1 Observable Decline

To make the problem interesting, we assume that as long as the state is good, i.e.,
ωt = G, it is dominant for both firms to remain in the market. That is, we assume
that λiG > c/R for both firms, i = 1, 2. If 2λBR − c > 0,11 the continuation game
after the state transitions, is a standard war of attrition, as in Hendricks et al.
(1988), which is known to have a multiplicity of equilibria.

Specifically, it has two pure strategy asymmetric equilibria. In each of them, one
of the firms exits as soon as the state transitions while the other firm never exits.
There exists a mixed strategy symmetric equilibrium in which both firms exit at the
constant rate

−r
λBR− c
2λBR− c

such that the cost of waiting, c− λBR, equals the benefit, ς (2λBR− c) /r, where ς
is the equilibrium exit rate of each firm.

Hence, a model with observable state transition is silent about how industry
characteristics affect the likelihood that the smaller or the larger firm survives the
industry decline.12 In contrast, with private learning we can give a partial answer
to the question, under our parametric restrictions the equilibrium is unique, and we
can identify conditions under which either the smaller or the larger firm exits first.

10The empirical literature finds higher markups for larger firms, e.g., De Loecker and Warzynski
(2012), Edmond et al. (2018), and Boar and Midrigan (2021).

11Trivially, if 2λBR− c ≤ 0, in equilibrium, firms exit as soon as the state transitions.
12The mixed strategy equilibrium in the continuation game after the state transition is symmetric

because the arrival rate of consumers of the two firms, conditional on ω = B, is assumed identical
that is, λ1B = λ2B = λB . If instead λ1B > λ2B , firm 1 exits at a higher rate as compared to firm 2.
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3.2 Public Learning

If firms observe one another’s customers, the model is closely related to the model
of Murto (2004). Despite the difference in the stochastic process governing the
underlying state of the world, the main insights of Murto (2004) carry over to our
setup, as formalized by the following proposition.

Proposition 1. If both firms observe one another’s customers and λ2
G > λ1

G >

c/R,13 there always exists an equilibrium in which firm 2 never exits first. If λ1
G is

low enough, R is high enough (or c is low enough), and r > λ1
G + λ2

G − 2λB, this is
the unique Nash equilibrium outcome.

As in Murto (2004), whenever the game has a unique equilibrium, the firm with
the larger profit flow forces the firm with the smaller profit flow to exit first.14 In
other words, a firm’s “strength” is monotone in its profit flow: the larger λiG is, the
longer the firm is willing to remain in the market. When instead there exist multiple
equilibria and, in particular, there exists an equilibrium in which the smaller firm
never exits first, there also exists a mixed strategy equilibrium.

As we discuss in the Appendix, in the mixed strategy equilibrium, the firm with
the higher customer arrival rate exits with positive probability at a certain belief;
for lower beliefs, both firms exit at a positive rate. In equilibrium, the rate at which
a firm exits makes the opponent indifferent between exiting and remaining in the
market. Consequently, as in a nondegenerate equilibrium of a complete information
war of attrition, the firm with the larger customer arrival rate has a lower probability
of survival.

It has been argued that it is odd that in the mixed strategy equilibrium, the firm
with the smaller customer arrival rate (i.e., the higher cost of fighting) wins more
frequently. Hence, when multiple equilibria exist, the most realistic equilibrium
seems to be that in which the firm with the larger customer arrival rate never exits
first. (See, for example, Kornhauser et al., 1989.) In a sense, our model provides a

13We discuss the bound λ1G > c/R in Lemma 1 below.
14Two remarks in order. First, Murto (2004) demonstrates uniqueness within the class of Markov

equilibria, while we provide sufficient conditions for uniqueness of a Nash equilibrium in the cases
of both public learning and private learning (see Theorem 2). Second, in Murto (2004), a firm
is stronger if it finds it profitable to remain in business longer in the monopoly position; conse-
quently, a firm is stronger if it enjoys greater profits. Within the Ghemawat and Nalebuff’s (1985)
framework, the firm with the larger capacity is weaker because it is unable to adjust its operating
cost.
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rationale for the larger firm to concede more often in equilibrium: interdependent
values and observational learning.

3.3 Private Learning: A Preview

Before plunging into the analysis of the main model, we provide an overview of
the main result. The next section provides sufficient conditions for the game with
private learning to have a unique equilibrium in which one of the firms exits first with
probability one. The gist of this result can be easily understood when the arrival
of a customer provides conclusive evidence that the industry is still profitable, i.e.,
λB = 0, focusing on the case of extreme asymmetry in arrival rates between the
two firms. First, it is clear that regardless of the strategy used by the firm with
a small customer arrival rate, the information conveyed by its behavior is of little
value to the competitor with a larger arrival rate, because of the asymmetry in the
precision of their signals. Second, the only reason why the larger firm may want to
wait for the smaller firm to exit first is to enjoy monopoly profits. But there always
exists a history along which the firm with a larger customer arrival rate has not
observed any customers for some time, and hence is arbitrarily pessimistic about
the state of the industry; because the rate of arrival of customers once the state
transitions is zero, the value of becoming a monopolist is then nil. As a result,
exiting is a dominant strategy at that history. Informally, a contagion argument
across histories implies that in the unique equilibrium the firm with the large arrival
rate of customers always exits first.

The crux of the paper is nailing down the main forces driving the result. As it
turns out, it is the observational learning dynamics brought about by private learning
that generates equilibrium uniqueness. On the one hand, we provide conditions for
equilibrium uniqueness even when being a monopolist is always profitable, so that
the second mover always find it profitable to remain into business. On the other
hand, as a larger rate of arrival of customers not only entails more precise information
but also larger revenues, it may be the smaller firm that finds it dominant to exit
in the unique equilibrium of the game.
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4 The Private Learning Game

This section presents our main results. We first introduce a notion of “strength” in
our war of attrition game by means of analyzing a specific best-reply problem. Sec-
ond, we construct two candidate equilibria. Third, we provide sufficient conditions
for each of them to be the unique strategy profile that survives iterated deletion
of (conditionally) dominated strategies, implying equilibrium uniqueness. Last, we
discuss the main forces at play and discuss the insights that can be derived from
our results.

4.1 A Best-Reply Problem

Suppose that firm j adopts the strategy of never exiting the market, and consider
the best-reply problem of firm i 6= j. The problem of firm i can be written as a
standard optimal stopping problem:

sup
τ

E

[∫ τ

0

e−rt
(
λiωtR− c

)
dt

]
.

The problem of firm i is Markov in its posterior belief about the prevailing
state and the best response takes a simple form: it prescribes exiting as soon as
the posterior belief falls below some cutoff π∗(λiG). Define τ ∗(λiG) as the earliest
time firm i exits with positive probability along the path induced by the best-reply
strategy, that is,15

Pr
[
ωτ∗(λiG) = G | N i

τ∗(λiG) = 0
]

= π∗(λiG).

In other words, along the history with no customers, firm i exits at time τ ∗(λiG).
(Recall that N i

t denotes the inhomogeneous Poisson process of customer arrivals of
firm i.)

In the special case of conclusive news, i.e., λB = 0, τ ∗(λiG) fully characterizes the
best reply of firm i. Because the posterior belief about the prevailing state jumps
to one whenever the firm observes a customer, the best reply prescribes exiting as
soon as no customers have been observed for an uninterrupted amount of time of
length τ ∗(λiG).

15Note the slight abuse of notation, as the first exit time τ∗(λiG) does in fact depend on the
other parameters of the model, but for convenience, we omit this dependence.
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Figure 1: Best reply for (c, R, r, γ) = (1/2, 1, 1/10, 1/5). The solid line indicates the
case of conclusive news, λB = 0. The dashed line indicates a case of inconclusive
news, λB = 1/5.

The following lemma characterizes how π∗(λiG) and τ ∗(λiG) change with λiG.

Lemma 1.
(i) π∗(λiG) < 1 if and only if λiGR > c.

(ii) τ ∗(λiG) is single-peaked, and limλiG→∞ τ
∗(λiG) = 0.

The non-monotonicity, illustrated in the right panel of Figure 1, is due to two
countervailing forces. On the one hand, the higher λiG is, the higher the marginal
benefit from remaining in the market at any given belief. In fact, the cutoff belief
π∗(λiG) is decreasing in λiG, as in the left panel of Figure 1. On the other hand, the
higher λiG is, the faster the firm becomes pessimistic about the market conditions.16

This observation is at the core of our main results.
In contrast to the case of privately observed customers, when learning is public,

the ranking of firms’ first exit times coincides with the ranking of their rates of
arrival of customers, that is, with their profit flow: the higher the customer arrival
rate, the larger the first exit time. The single-peakedness in Lemma 1 relies on the

16The result is reminiscent of Halac, Kartik, and Liu (2016) and Bobtcheff and Levy (2017).
Conceptually, our result generalizes theirs to a setup with inconclusive news and changing state.

13



fact that as λiG increases, both the profit flow and the speed of learning increase.17

With observable customers, the second force plays a limited role, in that firms learn
at the same speed so changing the rate of arrival of customers of one firm is akin to
a change in the discount rate, and there always exists an equilibrium in which the
firm with the higher customer flow never exits first.

To simplify the exposition of our results, we say that firm i is stronger than
firm j 6= i if the first exit time of firm i is larger than the first exit time of firm
j, that is, τ ∗(λiG) > τ ∗(λjG). In the next section, we show that there always exists
an equilibrium in which the stronger firm survives the industry decline, that is, the
weaker firm exits first with probability one.

In line with standard attrition games, strength captures a firm’s willingness to
endure low profits: a firm is stronger if it can outlast its rival. The caveat is that,
while in a war of attrition game, a stronger player also has a lower fighting cost, in
our model because of the non-monotonicity stated in Lemma 1, the firm with the
higher profit flow may not be the stronger firm.

4.2 A Pure Strategy Equilibrium

We now demonstrate the existence of an equilibrium in which the weaker firm exits
first with probability one. The section proceeds through a sequence of observations,
and the main result is formalized in Theorem 1 below.

Since π∗(λiG) is the optimal exit cutoff under the most pessimistic scenario in
which the other firm never exits first, in equilibrium, exiting when the posterior
belief is larger than π∗(λiG) is a dominated strategy, as formalized below.

Lemma 2. In any equilibrium, if firm i exits with positive probability at time t along
some history in which firm j is still active, then

Pr[ωt = G | (N i
s)s≤t, σ

j ≥ t] ≤ π∗(λiG).

In any equilibrium, a firm’s belief about the underlying state of the world evolves
because of private and observational learning. In light of existing results, such
as those of Rosenberg et al. (2007), one may expect to be able to decompose a

17It can also be shown that if one normalizes the lump-sum payoff such that the expected flow
is independent of the rate of arrival of news, the first exit time monotonically decreases in the
learning speed. Details are available upon request.
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player’s posterior belief into two single-dimensional statistics, i.e., a private belief
and a public belief. Unfortunately, there exist no single-dimensional statistics that,
combined with the private belief, yield the posterior belief about the prevailing state
of the industry.

Intuitively, because the state is not perfectly persistent, the fundamental uncer-
tainty concerns not only whether the industry has already become unprofitable but
also when that occured. In fact, conditional on the prevailing state being bad, i.e.,
ωt = B, players’ private signals are correlated, making the standard decomposition
technique inapplicable.

As a result, the relevant information for firm i cannot be summarized by its
private belief about the prevailing state and the status of the other firm (active or
not). The second-order belief of firm i, that is, its distribution over the private
belief firm j, affects firm’s i posterior about the current state of the world in a more
complicated manner than in Rosenberg et al. (2007).18

Our first main result identifies an equilibrium in which firms’ inference problems
are uncomplicated. A class of strategies that generate a simple inference problem
are cutoff strategies. According to a cutoff strategy, for some measurable function
pt : [0,∞) → [0, 1], a firm exits with probability one at the first-passage time of
its posterior belief under pt. For any p > 0, let σip be the pure strategy according
to which firm i adopts a time-independent cutoff p. Let σi0 be the strategy that
prescribes never exiting.

Theorem 1. Fix firm 1’s arrival rate of customers, λ1
G. There exists a λ

2

G > λ1
G

such that for (λ1
G, λ

2
G), λ2

G > λ
2

G, there exists an equilibrium in which firm 2 (the
larger firm) exits first with probability one, i.e., (σ1

0, σ
2
π∗(λ2

G)
) is an equilibrium.

In words, if the arrival rate of firm 2 is high enough, firm 1 is the stronger
one, and survives the industry decline. The theorem provides sufficient conditions
for the existence of an equilibrium in which firm 2 exits first with probability one.
However, in the case of conclusive news, we can prove a stronger result: for any
pair (λ1

G, λ
2
G) there always exists an equilibrium in which the weaker firm exits first

with probability one. That is, either (σ1
0, σ

2
π∗(λ2

G)
) or (σ1

π∗(λ1
G)
, σ2

0) is an equilibrium,

18Cisternas and Kolb (2020) show that in a private monitoring setup, the second-order beliefs
can be decomposed in a similar vein. However, in their setup, the first- and second-order beliefs
are determined by a finite-dimensional sufficient statistic.
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Figure 2: Example of equilibrium belief trajectories for (c, R, r, γ, , λ1
G, λ

2
G, λB) =

(1/2, 1, 1/10, 1/5, 1, 4, 0). The solid line is the belief trajectory of firm 1. The dashed
line is the belief trajectory of firm 2. The vertical line demarcates the time at which
firm 2 exits.

depending on whether τ ∗(λ1
G) ≷ τ ∗(λ2

G). Hence, it also guarantees the existence of
equilibrium in the case of conclusive news.

To gain some insight into the learning dynamics, Figure 2 illustrates a possible
realization of belief paths for the equilibrium in Theorem 1 under the assumption
that λ2

G > λ1
G > λB = 0 and firm 1 is the stronger firm, that is, τ ∗(λ1

G) > τ ∗(λ2
G).

First, note that in equilibrium, firm 2 never benefits from observational learning:
the evolution of firm 2’s belief at any point in time is uniquely driven by private
learning. Second, in the interval [0, τ ∗(λ2

G)), observational learning also plays no
role for firm 1. In fact, no firm is supposed to exit, and both base their assessment
of the market profitability on their private signals only.

In the equilibrium outcome illustrated in Figure 2, firm 2 does not exit at τ ∗(λ2
G)

because it observes a customer before that time. At τ ∗(λ2
G), firm 1’s belief jumps

upward because firm 2 not exiting reveals that it has observed at least a customer
in [0, τ ∗(λ2

G)). In the example, firm 1 does not observe any customer in [0, t̃). As
a result, at any t ∈ [τ ∗(λ2

G), t̃), the belief of firm 1 about the prevailing state of
the world, as well as its second-order belief, are constant.19 (See also Figure 3.)
Firm 2 not exiting at some t ∈ [τ ∗(λ2

G), t̃) reveals that firm 2 has observed its last
customer no earlier than t − τ ∗(λ2

G); otherwise, its belief would have fallen below
19The first- and second-order beliefs of firm 1 would not be constant in the case of inconclusive

news, λB 6= 0.
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Figure 3: The first- and second- order belief of firm 1 in the equilibrium (σ1
0, σ

2
π∗(λ2

G)
)

for (c, R, r, γ, λ1
G, λ

2
G, λB) = (1/2, 1, 1/10, 1/5, 1, 4, 0). On the left, the posterior

about the prevailing state at some time t > τ ∗(λ2
G) as a function of the time elapsed

since last observing a customer. On the right, firm 1’s distribution over firm 2’s
posterior belief at some t > τ ∗(λ2

G).

π∗(λ2
G) at some time before t. Hence, firm 2 not exiting at t ∈ [τ ∗(λ2

G), t̃) also
reveals that ωt−τ∗(λ2

G) = G. Consequently, from the perspective of view of firm 1,
the lack of customers in [0, t− τ ∗(λ2

G)) becomes irrelevant as far as its belief about
the prevailing state is concerned. Intuitively, firm 1 knows that firm 2 has “fresher”
news and can discard part of the information contained in its private history. This
explains why the first-order belief in the left-panel in Figure 3 eventually plateaus.

Moreover, in the outcome shown in Figure 2, as soon as firm 2 exits, firm 1
follows suit. As in Moscarini and Squintani (2010), the equilibrium may display
exit waves because information is revealed in a burst when a firm exits. In contrast,
information is revealed gradually at any point in time after the first exit time of the
weaker firm, as long as both firms remain in the market.

4.3 Equilibrium Uniqueness

In general, the equilibrium identified in Section 4.2 is not the unique equilibrium.
For example, for the parameters in Figure 2, both (σ1

0, σ
2
π∗(λ2

G)
) and (σ1

π∗(λ1
G)
, σ2

0) are
equilibria of the game, that is, if firms’ customer arrival rates are sufficiently similar,
there also exists an equilibrium in which the firm with the larger first exit time exits

17



first with probability one. In fact, if firm 1 exits as soon as its private belief falls
below the benchmark cutoff belief π∗(λ1

G), i.e., plays the strategy σ1
π∗(λ1

G)
, firm 2 has

incentives to remain in business at any point in time and along any history before
firm 1’s exit because its continuation payoff is strictly positive. In other words, firm
2, anticipating that firm 1 will eventually exit, is willing to remain in the market at
beliefs below the cutoff π∗(λG2 ).20

When payoff externalities are absent, in light of Rosenberg et al. (2007) , it is
natural to expect all the equilibria to be in cutoff strategies. The non-monotonicity
of the continuation payoff (see Footnote 20) as well as the results by Murto (2004)
suggest that this is not true in our setup. It is easy to construct simple mixed-
strategy equilibria. For example, for some parameters, the following strategy profile
is an equilibrium. Firm 2 exits with positive probability at time τ ∗(λ2

G) whenever
N2
τ∗(λ2

G)
= 0. If it does not exit at that time, it never exits thereafter. Firm 1 adopts

the strategy σ1
π∗(λ1

G)
. The probability with which firm 2 exits is chosen such that

firm 1’s best reply to it makes firm 2 indifferent between exiting at τ ∗(λ2
G) and never

exiting ever along the history with no customers.
Nevertheless, we are able to show that under appropriate conditions the game

has a unique Nash equilibrium outcome, specifically, there exists a unique strategy
profile that survives iterated deletion of conditionally dominated strategies.

Theorem 2.A. Assume that 2λBR − c ≤ 0. In the case of both conclusive and
inconclusive news, i.e., λB ≥ 0, for any λ1

G, there exists a λ
2

G > λ1
G such that for

(λ1
G, λ

2
G), λ2

G > λ
2

G, (σ1
0, σ

2
π∗(λ2

G)
) is the unique strategy profile that survives iterated

deletion of conditionally dominated strategies; hence, in the unique Nash equilibrium
outcome, the larger firm exits first (with probability one).

Theorem 2.B. In the case of conclusive news, i.e., λB = 0,21 there exists an open
set of pairs (λ1

G, λ
2
G), λ2

G < λ1
G, under which (σ1

0, σ
2
π∗(λ2

G)
) is the unique strategy profile

that survives iterated deletion of conditionally dominated strategies, provided that R
is high enough (or c is low enough) and that r and γ are high enough; hence, in the
unique Nash equilibrium outcome, the smaller firm exits first (with probability one).

20Interestingly, however, on the path induced by the equilibrium (σ1
π∗(λ1

G)
, σ2

0), before τ∗(λ1G),
the continuation payoff of firm 2 is sometimes non-monotone in its posterior belief. In fact, as
illustrated in Figure 3, the customer arrivals observed by a firm affect its second-order belief and
hence the expected exit time of the rival.

21The last paragraph in Section 4.3.1 discusses the role of the assumption λB = 0, which was
not needed in Theorem 2.A.
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Intuitively, the lower τ ∗(λ2
G) is, the more influential firm 2’s action, that is, the

stronger the inference drawn by firm 1 by observing firm 2 not exiting the market.
In other words, the lower τ ∗(λ2

G) is, the more firm 1 benefits from observational
learning. Because observing firm 2 not exiting brings good news, this strengthens
incentives for firm 1 to remain in the market. As a consequence, if this “signaling
disadvantage” is large enough, in the unique equilibrium, firm 1 eventually becomes
the monopolist.

In other words, private learning generates a discouragement effect. Firm 2 would
be willing to remain in the market at a belief lower than the single-player cutoff
only if it expected to eventually become a monopolist. However, by continuing
operations, firm 2 makes the opponent more optimistic and delays its exit. As a
result, anticipating a longer duopoly phase, it is discouraged from remaining in the
market.

Theorem 2 provides sufficient conditions for firm 2 to be the first to exit in the
unique outcome that survives iterated deletion of conditionally dominated strate-
gies.22 Interestingly, depending on the parameters, the larger or the smaller firm
eventually becomes the monopolist.

As shown in the Appendix, our result does not rely on the assumption that a
sufficiently pessimistic monopolist finds it optimal to exit, in that we can show that
even when being the monopolist is always profitable, i.e., 2λBR− c > 0, there exists
a nonempty set of parameters such that the weaker firm exits first in the unique
equilibrium of the game.23 Clearly, in this case, the equilibrium never displays exit
waves.

Theorem 2 can be summarized as follows: under some parametric restrictions,
in the unique equilibrium, the stronger firm, as defined in Section 4.1, survives. The
novel observation is the non-monotonic relationship between strength and profit
flow, which may be seen as a proxy for firm size.

22The sufficient parametric conditions in part B are in a sense not tight. We believe that the
uniqueness results extend to a larger set of parameters, but we were unable to derive tighter
bounds.

23In fact, the statement is only slightly weakened. If r > γ + λB , we can still identify a set of
pairs L ∈ (c/R,∞)× (c/R,∞), λ2G > λ1G, for which (σ1

0 , σ
2
π∗(λ2

G)
) is the unique equilibrium, but in

contrast to Theorem 2.A, proj1L 6= (c/R,∞).
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Figure 4: In gray, the sets of pairs (λG1 , λ
2
G) for which (σ1

0, σ
2
π∗(λ1

G
) is the unique

equilibrium for (c, R, r, γ, λB) = (1/10, 1, 7, 1/5, 0). The dashed line identifies the
sets of pairs (λG1 , λ

2
G) for which (σ1

0, σ
2
π∗(λ1

G)
) is the unique equilibrium when r = 20.

Figure 4 provides an illustration of the theorem; it identifies the set of pairs
(λ1

G, λ
2
G) for which firm 2 exits first in the unique strategy profile that survives

iterated deletion of dominated strategy.24

While delivering clear-cut predictions about the order of exit, the theorem is
mute about the ranking of equilibrium payoffs. In fact, if in equilibrium, the firm
with the larger arrival rate of customers exits first, it is a priori unclear which
firm collects a higher ex ante expected equilibrium payoff. On the one hand, the
firm with the smaller arrival rate of customers benefits from observational learning
and enjoys monopoly profits; on the other hand, the firm with the larger arrival
rate of customers enjoys larger revenues and can accurately time its exit to the
market conditions because it has more precise information. Figure 5 illustrates
how the ranking of ex ante expected equilibrium payoff depends on parameters:
in the numerical example, because of monopoly profits, the equilibrium payoff of
the smaller firm (solid line) is larger when the customer arrival rate are sufficiently
similar. However, the ranking of payoffs is reversed when the customer arrival rate
of the firm who exits first is sufficiently large.

24In light of the hump-shaped curve τ∗(λiG) and Theorem 1, in the right panel of Figure 4, for
any pair (λ1G, λ

2
G) belonging to the gray area, λ2G must lie to the left of argmax τ∗(λiG).
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Figure 5: Ex-ante expected payoff for (c, R, r, γ, λ1
G) = (1/2, 1, 1/10, 1/5, 1). The

solid and the dashed lines indicate the ex-ante expected payoff of firm 1 and firm 2,
respectively, in the equilibrium (σ1

0, σ
2
π∗(λ2

G)
). The strategy profile (σ1

0, σ
2
π∗(λ2

G)
) is an

equilibrium for any λ2
G ≥ 2.08075, as τ ∗(1) ' τ ∗(2.08075) (see Figure 1).

As discussed in the last paragraph of Section 4.2, depending on the parameters,
the equilibrium may display exit waves. In the case of conclusive news, we simulate
the probability of an exit wave using Monte Carlo methods. Figure 6 depicts the
probability of an exit wave, that is, the probability that firm 1 follows suit, as a
function of the customer arrival rate of firm 2; fixing the rate of arrival of firm
1, we pick the rate of arrival of firm 2 to be high enough so that, by Theorem 1,
(σ1

0, σ
2
π∗(λ2

G)
) is an equilibrium. Naturally, as the customer arrival rate of the large

firm increases, more information is released at its exit and the probability of an exit
wave increases.

Insights into Exit Patterns from Declining Industries

While the contribution of our paper is mainly theoretical, we believe that our frame-
work contributes to the discussion on the relationship between firm size and the
likelihood of survival. It has been argued that in markets where economies of scale
play an important role and where innovative activity is dominated by larger enter-
prises, small firms have a lower likelihood of survival, while size does not increase
the likelihood of survival in the mature stage of the industry life cycle, or in prod-
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Figure 6: Frequency of exit waves for (c, R, r, γ, λ1
G, λB) = (1/2, 1, 1/10, 1/5, 1, 0) for

different values of λG2 in the equilibrium (σ1
0, σ

2
π∗(λ2

G)
). We simulated the probability

of exit waves by running a Monte Carlo simulation with 10 000 draws. The lines
indicate the 95% confidence intervals.

ucts are relatively low in technological intensity (see, for example, Audretsch, 1991,
Audretsch and Mahmood, 1995, and Agarwal and Audretsch, 2001). Our results
suggest a new rationale for why the technological features of an industry may affect
exit patterns.

The importance of observational learning is corroborated, for example, by Goins
and Gruca (2008) who document how layoff announcements affect the stock price
of competitors, supporting the idea that disinvestment decisions reveal private in-
formation of the announcing firm about the future of the industry.

Roughly, our model predicts that if there is a high degree of uncertainty, that is,
both firms have little information about the market conditions, the small firm exits
first. (See the right panel in Figure 4.) Intuitively, if firms’ private information is
of little use in predicting future profits, in line with Geroski (1995), Theorem 2.B
predicts that the firm with the lowest profit flow exits first in the unique equilibrium
of the game. However, when the large firm has (sufficiently) precise information
about the market conditions, the small firm survives the industry decline, in line
with Agarwal and Audretsch (2001)’s finding that Geroski (1995)’s stylized fact
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does not hold in the mature phase of the industry life cycle or in high-technology
industries.25

Merger and acquisition strategies can be a particularly important tool in mature
or declining industries when it becomes desirable to quickly reduce capacity. Within
our framework, the larger firm has incentives to acquire and shut down the smaller
rival if allowed to do so, as was the case with GTE Sylvania and Union Electric in
the 1970s (see Harrigan, 2003).

As argued by Coate and Kleit (1991), the US Federal Trade Commission’s Hor-
izontal Merger Guidelines give no special consideration to declining industry merg-
ers, beyond arguing that the acquisition of exiting firms is unlikely to result in a
reduction of consumer surplus. In contrast, European and Japanese policy makers,
have implemented declining industry policies that allow firms to enter into hori-
zontal agreements to rationalize market capacity in the face of declining demand.
For example, in the late 1970s, the Japanese government organized a manufacturer
association to buy and retire assets in the shipbuilding industry. In this respect,
not only does our model provide further support for special treatment of declining
industry mergers, but it also sheds lights on a novel inefficiency brought about by
private learning.26

Nevertheless, in light of our extension to capacity disinvestment (see Section
B.3 in the Supplementary Appendix of Cetemen and Margaria, 2021), our analysis
can be viewed as suggestively complementary to Nishiwaki and Kwon (2013)’s, who
analyze the efficiency tradeoffs associated with capacity-reduction behavior within
multiplant firms. These authors document that in the Japanese cement industry,
the less efficient firms are not more likely to reduce capacity than more efficient
firms.

25Agarwal and Audretsch (2001) explain how the theory of strategic niches can explain this
finding. We believe that our model can provide a more compelling justification for the finding.

26The relevance of confidential business information in merger reviews is confirmed by the re-
cent attention that the Federal Trade Commission has devoted to implementing firewalls during
the pendency of merger investigations to prevent anticompetitive information exchange between
putative merger partners. (See, for example, the 2012 Statement of the Bureau of Competition of
the Federal Trade Commission, Negotiating Merger Remedies, available at https://www.ftc.gov/
system/files/attachments/negotiating-merger-remedies/merger-remediesstmt.pdf.)
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4.3.1 Discussion of the Proof

The proof relies on iterated deletion of (conditionally) dominated strategies.27 The
argument is somewhat involved; here, we illustrate the main ideas. First, we derive
a (uniform) lower bound on the belief of firm 1 along any path induced by a strategy
profile that survives iterated deletion of conditionally strictly dominated strategies
in the case of conclusive news. Next, we use a limit argument to bound the belief
in the case of inconclusive news.

The argument to derive the lower bound on firm 1’s belief is divided into six
steps and is illustrated in Figure 7. First, recall that remaining in the market is a
dominant action for firm i whenever it attaches a probability higher than the cutoff
π∗(λiG) to the prevailing state being good. (See Lemma 2.) We show that, under
the assumptions of the theorem, for any strategy of firm 2 that prescribes exiting at
some belief below π∗(λ2

G), firm 2 continuing operations always brings good news.28

As a result, the belief of firm 1 is bounded away from π∗(λ1
G) at any time before

τ ∗(λ1
G), making exiting before τ ∗(λ1

G) a dominated action.
Second, we argue that if the gap between the two first exit times is large enough,

specifically, if 2τ ∗(λ2
G)� τ ∗(λ1

G),29 as in Figure 7, at any t ∈ [0, 2τ ∗(λ2
G)), exiting is

a conditionally dominant strategy for firm 2 whenever its belief falls below the cutoff
π∗(λ2

G). Intuitively, firm 2 would be willing to remain in the market at a lower belief
only if it expected firm 1 to exit with positive probability at some future point in
time. However, by the first step, rationality implies that firm 1 does not exit until
relatively late in the game, that is, until τ ∗(λ1

G), and hence firm 2 does not find it
worthwhile to bear the expected losses to wait until then.

Third, at time 2τ ∗(λ2
G), if firm 2 does not exit, firm 1 can infer that the belief

of firm 2 never fell below the cutoff π∗(λ2
G) in [0, 2τ ∗(λ1

G)). In the case of conclusive
news, it is easy to identify the pair of firms’ private histories that are consistent
with them playing conditionally undominated strategies and with the public history
of no exit and that, when combined, would give rise to the lowest posterior belief

27As explained by Shimoji and Watson (1998), the standard notion of dominance has little bite in
extensive form games. In the Appendix, we explain how their definition of conditional dominance
can be extended to our setup.

28When firm 2 uses a cutoff strategy, this is immediate. However, in contrast to Rosenberg
et al. (2007), it is not necessarily true that any rationalizable strategy is a cutoff strategy (see
Section 4.3). Hence, arguing that observing that the rival is still active always brings good news
requires a more delicate argument.

29That is, if τ∗(λ1G)− 2τ∗(λ2G) is sufficiently large.
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about the state at time 2τ ∗(λ2
G). For firm 1, the “worst” history is that without any

customer. For firm 2, any “worst” history that is consistent with it playing condi-
tionally undominated strategies and not exiting by time 2τ ∗(λ2

G) involves observing
a customer “right after” τ ∗(λ2

G). (See Figure 7.)
Fourth, combining the inference from these two private histories yields a lower

bound on firm 1’s posterior belief at time 2τ ∗(λ2
G) along any history on the path

generated by a conditionally undominated strategy. For convenience, we further
approximate this bound conditioning only on ωτ∗(λ2

G) = G and firm 1 not having
observed any customers in [τ ∗(λ2

G), 2τ ∗(λ2
G)) to obtain the bound identified with the

first red x mark in Figure 7.
Fifth, we can derive a lower bound on the belief of firm 1 at any time after

2τ ∗(λ1
G) using the fact that the posterior belief cannot decrease faster than the

private belief, that is, the belief computed while disregarding observational learning.
(See Footnote 28.) When using this bound, we can show that exiting is a dominated
action for firm 1 at any time before τ ∗(λ1

G) + τ ∗(λ2
G). (See the red line in Figure 7.)

Last, at time 3τ ∗(λ2
G) the same conditional dominance arguments apply be-

cause the problem is stationary. The stationarity hinges on the conclusive news
assumptions, as if no firm exits before 3τ ∗(λ2

G), it becomes common knowledge that
ω2τ∗(λ2

G) = G. More precisely, for any n = 3, 4, . . . , firm 2 finds it dominant to exit
at any t ∈ [(n− 1) τ ∗(λ2

G), n τ ∗(λ2
G)) as soon as its belief reaches π∗(λ2

G). Therefore,
firm 1 finds it dominant not to exit at t ∈ [n τ ∗(λ2

G), n τ ∗(λ2
G) + τ ∗(λ1

G)), irrespective
of its private history.

In the case of inconclusive news, i.e., λB > 0, computing the lower bound for the
posterior belief is more complicated since it is unclear which pair of firms’ private
histories would give rise to the lowest posterior belief. Nevertheless, leveraging the
continuity of the posterior belief in λB, we show that for any λB > 0, as λ2

G goes
to infinity, at any time along a history in which firm 2 does not exit, the posterior
belief of firm 1 conditional on firm 2 playing undominated strategies is bounded
away from the cutoff belief π∗(λ1

G).30 Intuitively, as λ2
G grows large, firm 1 bases its

inference mostly on observational learning, and in the limit, the fact that it learns
via inconclusive bad news, instead of conclusive bad news, becomes irrelevant.

As noted, the two parts of Theorem 2 are not specular. The key step in the
proof is to show that firm 2 finds it dominant to exit at 2τ ∗(λ2

G) whenever its
30To be clear, the first part of Theorem 2 is valid for any λB > 0. We expect that the second

part is valid for sufficiently low λB .
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Figure 7: Illustration of the proof of Theorem 2. The black dashed line indi-
cates the belief of firm 2 along an history with one customer at τ ∗(λ2

G) and one
customer at 2τ ∗(λ2

G). In red, the lower bound on firm 1’s belief. In the figure,
(c, R, r, γ, λ1

G, λ
2
G) = (1, 1, 1/10, 1/5, 3/2, 8).

belief falls short of the cutoff π∗(λ2
G). Now, when the customer arrival rate of firm

2 is sufficiently large, its cutoff belief π∗(λ2
G) is arbitrarily low. As a result, in

the limit, firm 2 finds it conditionally dominant to exit for “almost any” τ ∗(λ1
G) >

2τ ∗(λ2
G). In contrast, when firm 2 is smaller than firm 1, i.e., λ2

G < λ1
G, firm

2 finds it conditionally dominant to exit at 2τ ∗(λ2
G) only if τ ∗(λ1

G) − 2τ ∗(λ2
G) is

sufficiently large. That is, it is not firm 2’s pessimism about the state of the world
that determines its incentives to exit but rather the amount of time it expects the
duopoly to last. It can be shown that the maximum first exit time is increasing in
the operating cost c. As a result, if firm 2 is sufficiently impatient and the operating
cost is such that the first exit time of firm 1 is sufficiently high, firm 2 will find it
dominant to exit at 2τ ∗(λ2

G).

4.4 Extensions

In this section, we discuss several extensions of our stylized model and show that
our results appear quite robust.

Other Asymmetries. Other types of asymmetries can easily be accommodated.
Specifically, our results hold true if firms are asymmetric in their cost of operation
(c), their revenues (R), their discount rate (r), or their rate of arrival of customers in
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the bad state (λB). More formally, for any set of parameters, (c1, c2, R1, R2, r1, r2, λ1
B, λ

2
B)

and any λ1
G, firm 2 exits first in the unique equilibrium of the game provided that

λ2
G is large enough, even if λ2

B < λ1
B. In this sense, the result holds true even if, as in

Ghemawat and Nalebuff (1985), the larger firm bears a larger loss after the industry
decline. In addition, for any set of parameters, (c1, c2, R1, R2, r1, r2, λ1

B, λ
2
B), there

exists an open set of pairs (λ1
G, λ

2
G) such that λ2

G < λ1
G and firm 2 exits first in the

unique equilibrium of the game provided that R1/c1, r2, and γ are high enough.
In a setup with asymmetric primitive parameters, the following comparative

statics result is almost immediate.

Proposition 2. For any set of parameters (c1, c2, R1, R2, r1, r2, λ1
B, λ

2
B), the set of

pairs (λ1
G, λ

2
G) identified in Theorem 2 is increasing (in the inclusion order) in r2

and c2.

We believe also that the set of strategy profiles that survive iterated deletion of
dominated strategy should be increasing in r2 and c2. Intuitively, for any strategy
of firm 1, the expected continuation payoff of firm 2 along any history is decreasing
in c2 and r. Hence, in the iterated procedure, whenever along some history exiting
is dominant for firm 2 in a game in which the operating cost of firm 2 is c2 (the
discount rate of firm 2 is r2), exiting along that history is also dominant in a game in
which the operating cost of firm 2 is c2′ > c2 (the discount rate of firm 2 is r2′ > r2).
Deleting more strategies for firm 2 among those that prescribe remaining in the
market along some history makes firm 1 more optimistic and can only increase the
histories along which remaining in the market is dominant. While intuitive, this
argument is difficult to formalize unless one focuses on a specific deletion procedure,
as we do in Proposition 2.

Numerical simulations suggest that the comparative static with respect to the
discount rate also holds in a setup with symmetric primitive parameters. (See also
Figure 4.)

Public Information. Our results are to some extent robust to the introduction of
background public learning. For example, in the presence of public conclusive good
news, as long as the rate of arrival of public news is low enough, if the customer
arrival rate of firm 2 is sufficiently high, in the unique equilibrium, firm 2 exits first
with probability one. On the one hand, along any history, the additional information
from the public news is of little help to firm 2 in drawing an inference about the
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state of the world. On the other hand, if the informativeness of the public signal is
sufficiently low, the bad news from the absence of public good news cannot offset
the good news from firm 2 remaining in the market. As a result, our dominance
argument holds true. However, as private learning plays a key role in our proof, a
sufficiently informative public signal may overturn our result by weakening the role
of signaling.

Alternately, consider the case in which the state is publicly revealed at the jump
times of a (state-independent) Poisson process. In this case, as soon as the public
signal reveals that the market has become unprofitable, the game enters a war of
attrition phase, as in Section 3.1. However, along the path with no bad conclu-
sive news, our equilibrium analysis applies. In the same spirit, we could allow for
the transition to the bad state to be publicly revealed with a deterministic delay:
provided that the delay is long enough, our equilibrium analysis remains valid.31

Pricing. A few papers, such as Roberts (1986), have extended the Milgrom and
Roberts (1982) limit-pricing model to capture post-entry predation. Conceivably, a
firm may attempt to use its pricing strategy to convey some bad news about the
market’s profitability.32 While we leave the analysis of dynamic private learning and
signaling to future research, in this section, we discuss a simple way to introduce
pricing into our model in the spirit of Diamond (1971).

Suppose that at each moment in time, each firm also sets its price. A consumer of
firm i arriving at time t observes firm i’s price at that time, and decides whether to
purchase from firm i or to incur a cost to inspect the price posted by the other firm.
(Agents are short-lived, i.e., cannot delay their purchase.) Consumers’ willingness to
pay is distributed according to some distribution function F , irrespective of ωt, and
that p(1 − F (p)) is single-peaked. We now argue that regardless of whether firms
observe one another’s posted prices, the strategy profile in Theorem 1 is part of an
equilibrium in which both firms charge the monopoly price arg maxp p(1− F (p)).

Assume first that the posted price is unobservable to the competitor. First, in
line with Diamond’s paradox, if customers expect both firms to charge the same
price, they will not find it worthwhile to pay the search cost. Second, the weaker

31We thank an anonymous referee for this remark.
32We are not aware of pricing models with two-sided private learning about a common underlying

state of the world. The paper by Sweeting et al. (2019) is an exception: they extend their finite-
horizon model to allow for this possibility.
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firm has no incentive to raise the price and lose a customer because this would not
affect the behavior of its competitor, even if it would make it more optimistic about
the market condition. The stronger firm has no incentive to lose customers to its
competitor either because, if anything, this would delay the time the weaker firm
exits. Last, even if firms could obverse one another’s price, the equilibrium can be
sustained by an appropriate choice of off-path beliefs.

5 Conclusions

We analyze a dynamic model of exit from a stochastically declining market. We
investigate how private learning affects the equilibrium dynamics. We provide suf-
ficient conditions under which the equilibrium is unique. When the equilibrium is
unique, the firm that we identify to be the weaker firm exits first with probability
one. We show that in our model, the strength of a firm is determined by its first
exit time, a measure of its signaling disadvantage. Crucially, the first exit time is
non-monotonic in firm size or, equivalently, in learning speed. As a result, our model
provides a novel explanation, based on informational externalities, of the fact that
in some industries, smaller firms survive the decline. Specifically, our paper offers a
theory of exit that ties the industry economic primitives to exit dynamics. Further-
more, in Cetemen and Margaria (2021), we show that our model is equivalent to
an investment game in which competing firms privately learn over time about the
comparative profitability of an innovation and decide when to irreversibly invest in
it. Therefore, our results can provide insights into the dynamics of investment in
disruptive innovation à la Christensen (1997) or into the dynamics of pharmaceutical
R&D (see, for example, Krieger, 2020).

We conjecture that our proof technique can be applied to other asymmetric
timing games with private learning, potentially with more than two players. For
example, the recursive dominance argument can be adapted to show uniqueness
in some asymmetric preemption games with evolving state and private learning by
identifying an appropriate bound on a player’s continuation payoff if he or she does
not act at the single-agent optimal cutoff.33

33Thomas (2020) proves equilibrium uniqueness in two-player preemption games with private
learning (and perfectly persistent state) using a different technique.
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Our results do not immediately extend to a setup in which the market profitabil-
ity fluctuates over time. This generalization may have the potential to provide a
novel model of shakeouts. We leave these questions for future research.
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A Omitted Proofs

A.1 Proofs for Section 4

Proof of Lemma 1. If λiGR ≤ c, even when the prevailing state is good, firm i’s
expected flow payoff is nonpositive. Hence, the firm finds it optimal to exit imme-
diately, i.e., π∗(λiG) = 1. To prove the converse, we show that if λB = 0, whenever
λiGR > c, π∗(λiG) < 1. A fortiori π∗(λiG) < 1 when λB > 0.

When λiGR > c, the value function of the best-reply problem solves the following
Hamilton-Jacobi-Bellman equation

rv(p) =
(
pλiG + (1− p)λB

)
(R + v (j (p))− v(p))− c

−
(
p(1− p)(λiG − λB) + pγ

)
v′(p),

(2)

where

j(p) =
p λiG

p λiG + (1− p)λB
,

denotes the belief after observing a customer.
In the case of conclusive news, i.e., λB = 0, by solving the Hamilton-Jacobi-

Bellman equation, we find that in the continuation region,

v(p) = −
(

1− λiG
γ + λiG + r

p

)
c

r
+

λiG
γ + λiG + r

p (R + v(1)) + pΩ(p)
1+ r

γ+λi
G C,

where C is a constant of integration. Since

v(1) = −
(

γ + r

γ + λiG + r

)
c

r
+

λiG
γ + λiG + r

(R + v(1)) + γ
1+ r

γ+λi
G C,

we have

C = γ
−1− r

γ+λi
G

((
γ + r

γ + λiG + r

)(
v(1) +

c

r

)
−

λiG

γ + λiG + r
R

)
. (3)
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Using smooth-pasting condition at the cutoff π∗(λiG), v′(π∗(λiG) = 0,

v(1) = −c
r

+
λiG

γ + r
R

+
γ + λiG + r

γ + r

π∗(λiG)λiGγ

(γ + r)(π∗(λiG)λiG + r)
(

Ω(π∗(λiG))

γ

) r

γ+λi
G − π∗(λiG)λiGγ

R,

where

Ωi(p) =
γ + (1− p)λiG

p
.

Using this equation to replace v(1) in equation (3), we obtain

C = γ
− r

γ+λi
G

π∗(λiG)λiGγ

(γ + r)(π∗(λiG)λiG + r)
(

Ω(π∗(λiG))

γ

) r

γ+λi
G − π∗(λiG)λiGγ

R,

which, replaced in the value-matching condition, v(π∗(λiG)) = 0,

−
(

1− λiG
γ + λiG + r

π∗(λiG)

)
c

r
+

λiG
γ + λiG + r

π∗(λiG) (R + v(1))

+ π∗(λiG) Ω(π∗(λiG))
1+ r

γ+λi
G C = 0,

yields, after some manipulations,34

Ωi(π
∗(λiG)) =

λiG(γ + λiG)(γ + λiG + r)

(γ + r)

R

c
− λiG(γ + λiG + r)

r

+
γλiG(γ + λiG)

r(γ + r) (Ωi(π∗(λiG))/γ)
r/(γ+λiG)

.
(4)

The right-hand side is decreasing in π∗(λiG), and the left-hand side is increasing
in π∗(λiG). Hence, there exists at most one root of equation (4). At π∗(λiG) = 1,
λiGR > c implies that the left-hand side if smaller than the right-hand side, while
in the limit at π∗(λiG) goes to zero, the opposite is true. It follows that there exists

34It can be checked that when γ = 0, (4) reduces to the cutoff characterization of Décamps and
Mariotti (2004) and Keller et al. (2005).
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a unique root π∗(λiG) < 1. Optimality follows by standard verification arguments.
(See, for example Øksendal and Sulem, 2019, Theorem 3.2.).

In the general case, i.e. λB ≥ 0 the existence and uniqueness results for functional
differential equations guarantee that there exists a unique twice continuously differ-
entiable solution to the Hamilton-Jacobi-Bellman equation given an initial guess for
v(1); see for example Corduneanu et al., 2016, Theorem 2.4.35 Define the mapping
Γ : [0, (λiGR− c)/r]→ R, which maps an initial guess v(1) to the following function
of the corresponding solution minp∈(0,1] v(p)+ |v′(p)|. Note that Γ(0) = (λiGR− c)/r,
while Γ((λiGR− c)/r) < 0. By Corduneanu et al., 2016, Theorem 3.6, the mapping
Γ is continuous. Hence, by the intermediate value theorem, there exists a guess such
that the solution to the Hamilton-Jacobi-Bellman equation satisfies v(p) = v′(p) = 0

for some p ∈ (0, 1). Again, optimality and uniqueness follow by standard verification
arguments.

Using the value-matching and smooth-pasting conditions, it is easily verified that
the optimal cutoff π∗(λiG) satisfies the following equation

π∗(λiG) =
c

(λiG − λB) (R + v (j(π∗(λiG)))
− λB
λiG − λB

. (5)

Given an increasing function v, the equation has at most one solution π∗(λiG). The
right-hand side is decreasing in v, j, and λiG. Both the value function v and the
function j are increasing pointwise in λiG. Hence, by the implicit function theorem,36

we can conclude that the optimal cutoff π∗(λiG) is decreasing in λiG.
(ii) With an abuse of notation, in the general case, i.e., λB ≥ 0, we write

Ω(p) =
γ + (1− p)(λiG − λB)

p
.

35After a change of variables q = 1 − p, the functional differential equation (2) is a Volterra
operator. After bounding the domain to q ∈ [0, 1− ε), for arbitrarily small ε > 0, the assumptions
of Corduneanu et al., 2016, Theorem 2.4 are satisfied.

36To be precise, abusing notation let v(p, λiG) and j(p, λiG) be the optimal value function and
the function that describes the belief after the arrival of a customer respectively, when the rate
of arrival of consumers in the good state is λiG. Then, v(p, λ

i
G) is continuously differentiable in p,

and j(p, λiG) is continuously differentiable in λiG. By the envelope theorem of Milgrom and Segal
(2002), the value function v(p, λiG) is continuously differentiable in λiG.
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First, as proved above, π∗(λiG) is decreasing in λiG. Second, note that

τ ∗(λiG) =
ln (Ω(π∗(λiG))/γ)

γ + λiG − λB
.

It follows from equation (5) that

π∗(λiG) ≥
c

(λiG − λB) (R + (λiGR− c) /r)
− λB
λiG − λB

=: π(λiG),

where the bound is derived by replacing v(j(π∗(λiG))) with (λiGR− c) /r. Clearly,
v(j(π∗(λiG))) < (λiGR− c) /r because γ > 0 and the state market conditions even-
tually deteriorate.

By de l’Hôpital’s rule

lim
λiG→∞

ln (Ω(π(λiG))/γ)

γ + λiG − λB
= lim

λiG→∞

1

Ω(π(λiG))

(
1− π(λiG)

π(λiG)
+
γ + λiG − λB
π(λiG)

2 π′(λiG)

)

= lim
λiG→∞

1− π(λiG)

γ + (1− π(λiG))(λiG − λB)
+

γ + λiG − λB
γ + (1− π(λiG))(λiG − λB)

π′(λiG)

π(λiG)
.

Since π′(λiG) = O((λiG)−2) and π(λiG) = O((λiG)−1), the right-hand side converges to
zero. Hence,

0 = lim
λiG→∞

ln (Ω(π(λiG)/γ))

γ + λiG − λB
≥ lim

λiG→∞

ln (Ω(π∗(λiG)/γ))

γ + λiG − λB
,

and limλiG→∞ τ
∗(λiG) = 0. We now state and prove two lemmas that are used later.

Lemma 3. The following holds:

lim
λiG→∞

π∗(λiG)λiG → 0.

Proof. First, in the case of conclusive news, i.e., λB = 0, the smooth-pasting condi-
tion implies

0 = λiGπ
∗(λiG)(R + v(1))− c.

39



Moreover,

v(1) ≥
λiG

(
1− e(γ+λiG+r)τ

)
γ + r + λiGe

(γ+λiG+r)τ
R

−
(γ + r)(λiG + γ)− λiGre−(γ+λiG+r)τ + γ(r + γ + λ1)e−rτ

r(γ + λiG)
(
γ + r + λiGe

(γ+λiG+r)τ
) c

for all τ ≥ 0. Hence, v(1) → ∞ as λiG → ∞. As a result, limλiG→∞ λ
i
Gπ
∗(λiG) = 0.

Because the cutoff belief in the case of conclusive news is an upper bound on the
cutoff belief in the case of inconclusive news, it follows that the result generalizes to
the case of λB > 0.

Lemma 4.

(i) π∗′(λiG) < 0.

(ii) limλiG→∞ π
∗′(λiG) = 0.

(iii) limλiG→∞ π
∗′′(λiG) = 0,

Proof. (i) and (ii) As in Footnote 36, we let v(p, λiG) and j(p, λiG) be the optimal
value function and the function that describes the belief after the arrival of a cus-
tomer, respectively, when the rate of arrival of consumers in the good state is λiG.
By the implicit function theorem,

π∗′(λiG) =− π∗(λiG)

λiG − λB
− c

(λiG − λB) (R + v (j(π∗(λiG), λiG), λiG))
2(

vp
(
j(π∗(λiG), λiG), λiG

) π∗(λiG)(1− π∗(λiG))λB

(π∗(λiG)λiG + (1− π∗(λiG))λB)
2

+ vλiG

(
j(π∗(λiG), λiG), λiG

))
.

(6)

A simple mimicking argument implies that vp(p, λiG) > 0 and vλiG(p, λiG) > 0, that
immediately implies π∗′(λiG) < 0. For part (ii), by Lemma 3, π∗(λiG)λiG → 0;
it follows that limλiG→∞ π

∗′(λiG) = 0. (iii) Denote the term in parentheses in
equation (6) by DλiG

v (j(π∗(λiG), λiG)) and its derivative with respect to λiG by
D2
λiG
v (j(π∗(λiG), λiG)).
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By the implicit function theorem,

π∗′′(λiG) =
2π∗(λiG)

(λiG − λB)2
+

(
2 (π∗(λiG)λiG + (1− π∗(λiG))λB)

(λiG − λB) (R + v (j(π∗(λiG)))

)
DλiG

v
(
j(π∗(λiG), λiG)

)
+

2 (π∗(λiG)λiG + (1− π∗(λiG))λB)

(λiG − λB) (R + v (j(π∗(λiG)))
2

(
DλiG

v
(
j(π∗(λiG), λiG)

))2

− (π∗(λiG)λiG + (1− π∗(λiG))λB)

(λiG − λB) (R + v (j(π∗(λiG)))
D2
λiG
v
(
j(π∗(λiG), λiG)

)
.

The term on the right-hand side converges to zero, as D2
λiG
v (j(π∗(λiG), λiG)) is

bounded.

The proof of single-peakedness relies on the following lemma, which establishes
a scale-invariance property of the optimal stopping problem.

Lemma 5. Consider two sets of parameters (c, R, r, λiG, λB, γ) and (ĉ, R, r̂, λ̂iG, λ̂B, γ̂)

such that

λ̂iG

γ̂
=
λiG

γ
,

λ̂B

γ̂
=
λB

γ
,

r̂

γ̂
=
r

γ
,

ĉ

γ̂
=
c

γ
.

The optimal value functions and the optimal cutoff beliefs in the two optimal stopping
problems coincide.

Proof. First, note that the optimal value function associated with the first opti-
mal stopping problem satisfies the Hamilton-Jacobi-Bellman equation of the second;
see (2). In addition, the smooth-pasting and value-matching conditions associated
with the two optimal stopping problems are identical. Since a standard verifica-
tion theorem applies (see Øksendal and Sulem, 2019, Theorem 3.2), the optimal
value functions and the optimal cutoff beliefs in the two optimal stopping problems
coincide.

Throughout, we fix a vector (c, R, r, λB). In light of Lemma 5, we consider
the optimal stopping problem “scaled” by some γ, that is, we should consider how
the first exit time changes with λiG in the optimal stopping problem parametrized
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by (γc,R, γr, γλiG, γλB, γ), where the first element is the flow cost of remaining in
business.

Define π̂∗(λiG) to be the optimal cutoff when γ = 1, and the other parameters
are (c, R, r, λiG, λB). By construction, the optimal cutoff associated with the decision
problem parametrized by (γc,R, γr, γλiG, γλB, γ) is also π̂∗(λiG). Define

τ̂ ∗(Λi
G; γ) =

ln
(

1
π̂∗(ΛiG)

+
1−π∗(ΛiG)

π∗(λiG)
(Λi

G − λB)
)

γ(1 + Λi
G − λB)

such that the first exit time associated with the decision problem parametrized
by (γc,R, γr, γλiG, γλB, γ) is equal to τ̂ ∗(Λi

G; γ). In other words, for any set of
parameters, τ ∗(λiG) = τ̂ ∗(λiG/γ; γ). Clearly, proving the single-peakedness of τ̂ ∗ is
equivalent to proving the single-peakedness of τ ∗.

By differentiation,

τ̂ ∗′(Λi
G; γ) =

1

γ(1 + Λi
G − λB)

(
− τ̂ ∗(Λi

G; γ)

+

(
1− π̂∗(Λi

G)

1 + (1− π̂∗(Λi
G))(Λi

G − λB)

−
1 + Λi

G − ΛB

(1 + (1− π̂∗(Λi
G))(Λi

G − λB)) π̂∗(Λi
G)
π̂∗′(Λi

G)

))
.

(7)

We now define

ψ(Λi
G) :=

1− π̂∗(Λi
G)

1 + (1− π̂∗(Λi
G))(Λi

G − λB)
−

1 + Λi
G − ΛB

(1 + (1− π̂∗(Λi
G))(Λi

G − λB)) π̂∗(Λi
G)
π̂∗′(Λi

G).

Note that ψ(Λi
G) does not depend on γ. The following lemma establishes two prop-

erties of the function ψ(Λi
G), which we use later.

Lemma 6.

(i) ψ′(Λi
G) < 0 a.e. for Λi

G ≥ Λi
G, for some Λi

G ∈ (c/R + 1/2,∞).

(ii) infΛiG∈(c/R+1/2,ΛiG] ψ(Λi
G) > 0.
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Proof. For (i), differentiating yields

ψ′(Λi
G) = −

(
1

1 + (1− π̂∗(Λi
G))(Λi

G − λB)

)2

((
1− π̂∗(Λi

G)
)2

+ 2π̂∗′(Λi
G) + (1 + Λi

G − λB)(1 + (1− 2π̂∗(Λi
G))(λiG − λB))

(
π̂∗′(Λi

G)

π̂∗(Λi
G)

)2
)

− 1 + ΛG − λB
π̂∗(Λi

G) (γ + (1− π̂∗(Λi
G))(Λi

G − λB))
π̂∗′′(Λi

G).

Recall that π̂∗′(Λi
G) < 0 and limΛiG→∞ π̂

∗(Λi
G) = 0. Moreover, by Lemma 4, for

sufficiently high Λi
G, the terms on the second and third lines are positive a.e. for

Λi
G > Λi

G for some Λi
G <∞. Because Λi

G <∞, result (ii) follows.

To conclude, we first show that τ̂ ∗(Λi
G; γ) is single-peaked for sufficiently high γ.

Observe that τ̂ ∗(Λi
G; γ) is (pointwise in Λi

G) decreasing in γ. Hence, for sufficiently
high γ, for all Λi

G ∈ (c/R + 1/2,Λi
G], τ̂ ∗(Λi

G; γ) < infΛiG∈(c/R+1/2,ΛiG] ψ(Λi
G). Con-

sequently, for γ high enough, the function τ̂ ∗(Λi
G; γ) is single-peaked as τ̂ ∗(Λi

G; γ)

crosses the function ψ(Λi
G) no more than once and from below (see (7)). Therefore,

τ̂ ∗(Λi
G; γ) must be single-peaked for any γ, because a linear transformation of a

single-peaked function is single-peaked.

Proof of Lemma 2. Consider firm i at time t following the private history (N i
s)s≤t,

and assume

Pr[ωt = G | (N i
s)s≤t, σ

j ≥ t] > π∗(λiG).

Hence, if the firm remains in the market until t+ dt, the expected payoff it collects
in [t, t+ dt) is bounded below by(
− c+

(
Pr[ωt = B | (N i

s)s≤t, σ
j ≥ t]λB + Pr[ωt = G | (N i

s)s≤t, σ
j ≥ t]λiG

)
·
(
R + v

(
π∗(λiG)λiG

π∗(λiG)λiG + (1− π∗(λiG))λB

)))
dt > 0,
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where v : [0, 1] → R denotes the value function associated with the best-reply
problem in Section 4.1. The bound follows from a few observations. First, the last
term on the left-hand side is a lower bound on the expected continuation payoff
after observing a customer: firm i can only benefit from firm j using a strategy
other than never exiting. Second, in [t, t + dt), firm j may exit the market, but
because the expected payoff in the continuation game is weakly positive, we can
omit the corresponding term. Last, by the definition of π∗(λiG), the inequality holds
for any Pr[ωt = G | (N i

s)s≤t, σ
j ≥ t] > π∗(λiG). Therefore, the result follows.

Proof of Theorem 1. The proof is divided into two parts. We start with the case
of conclusive news, λB = 0. We claim that if τ ∗(λ1

G) > τ ∗(λ2
G), then (σ1

0, σ
2
π∗(λ2

G)
)

is an equilibrium. The result then follows from Lemma 1. First, by definition,
σ2
π∗(λ2

G)
is a best reply to σ1

0. Second, by the proof of Lemma 2, if for some t ≥ 0,
Pr[ωt = G | (N1

s )s≤t, σ
2 ≥ t] > π∗(λ1

G), it is dominant for firm 1 to remain in the
market at t. Even if firm 1 did not observe any customer in [0, τ ∗(λ2

G)), its belief
Pr[ωt = G | (N1

s )s≤t, σ
2 ≥ t] would jump upward at τ ∗(λ2

G) and remain at some
value strictly higher than π∗(λ1

G) as long as it does not observe any arrival and firm
2 does not exit. In fact, along a history with no customers, as long as firm 2 does
not exit, the belief of firm 1 is constant whenever the last customer was observed
more than τ ∗(λ1

G) amount of time ago.37 It follows that σ1
0 is a best reply to σ2

π∗(λ2
G)
.

We consider now the case of inconclusive news, i.e., λB > 0. We want to prove
that for sufficiently high λG2 , the strategy profile (σ1

0, σ
2
π∗(λ2

G)
) is an equilibrium of the

game. First, by Lemma 1, for sufficiently high λG2 , 2τ ∗(λG2 ) < τ ∗(λG1 ). Now, along
the path induced by this strategy profile, if firm 2 has not exited by time t > 0, the
posterior likelihood about the prevailing state is bounded below by

e−(γ+λ1
G)t Pr [Pr [ωs = G | N2

t ] > π∗ (λ2
G) , for all s ≤ t | ωt = G]∫ t

0

γe−γse−λ
1
Gse−λB(t−s)

(
e−λB(t−s)

∞∑
i=

⌊
t−s

τ∗(λ2
G

)

⌋ (λ2
B(t−s))

i

i!

(
1− e−λBτ∗(λ2

G)
)i)

ds

This is a lower bound because at any time s ≤ t, firm 2 having observed at least
bs/τ ∗(λ2

G)c customers, with the time between two customers being no larger than
τ ∗(λ2

G) is a necessary but not sufficient condition for it to remain in the market up
to time t. Moreover in the denominator, we are writing the probability that firm 2

37We discuss this fact at length when explaining Figure 2.
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observed sufficiently many customers once the state has transitioned to bad, but we
omit the probability of observing sufficiently many customers at earlier times when
the state was still good.

As shown in Lemma 7, the denominator converges to zero as λ2
G →∞, uniformly

in t. It is easy to see that the numerator is always bounded away from zero. As a
result, the posterior belief of firm 1 is again bounded away from the cutoff π∗(λG1 )

and by Lemma 2, σ1
0 is a best reply to σ2

π∗(λ2
G)
.

Lemma 7. The following holds, uniformly in t,

lim
λ2
G→∞

∫ t

0

γe(γ+λ1
G−λB)(t−s)

(
e−λB(t−s)

∞∑
i=

⌊
t−s

τ∗(λ2
G

)

⌋
(λ2

B(t− s))i
i!

(
1− e−λBτ∗(λ2

G)
)i)

ds = 0.

Proof. With a slight abuse of notation, let γ(·, ·) denote the lower incomplete gamma
function.38 The function above is bounded above by

∫ ∞
0

γe(γ+λ1
G−λB)(t−s)

⌊
t−s

τ∗(λ2
G)

⌋
⌊

t−s
τ∗(λ2

G)

⌋
!

exp
(
−λB(t− s)e−λBτ∗(λ2

G)
)

γ

(⌊
t− s
τ ∗(λ2

G)

⌋
,
(

1− e−λBτ∗(λ2
G)
)

(t− s)λB
)

ds.

Applying a change of variable,

∫ ∞
0

γe(γ+λ1
G−λB)x

⌊
x

τ∗(λ2
G)

⌋
⌊

x

τ∗(λ2
G)

⌋
!

exp
(
−λB(x)e−λBτ

∗(λ2
G)
)

γ

(⌊
x

τ ∗(λ2
G)

⌋
,
(

1− e−λBτ∗(λ2
G)
)
xλB

)
ds.

38That is, γ(s, x) =
∫ x
0
ys−1e−y dy.
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Using the fact that x > s − 1, γ(s, x) < xse−x and the Stirling’s approximation,
as for λ2

G high enough the first argument of the gamma function is larger than the
second and τ ∗(λ2

G) goes to zero, the integral above is no larger than

∫ ∞
0

γe(γ+λ1
G)x(eτ ∗

(
λ2
G

)
)
x/τ∗(λ2

G)
dx = γ

e

(
1/τ∗(λ2

G)+γ+λ1
G+

ln τ∗(λ2
G)

τ∗(λ2
G

)

)
x

1/τ ∗(λ2
G) + γ + λG1 +

ln τ∗(λ2
G)

τ∗(λ2
G)

∣∣∣∣∣
∞

0

= − γ

1/τ ∗(λ2
G) + γ + λG1 +

ln τ∗(λ2
G)

τ∗(λ2
G)

,

provided that λ2
G is enough. The term above converges to zero as λ2

G →∞, proving
the result.

The proof of Theorem 2 relies on iterated deletion of conditionally dominated
strategies. The notion of conditional dominance was introduced by Shimoji and
Watson (1998). Informally, according to Shimoji and Watson’s (1998) definition,
a strategy is conditionally dominated if one can find an information set such that
the strategy is strictly dominated when one restricts attention to strategies that
are consistent with reaching that information set. Iterative deletion of conditionally
dominated strategies is then defined as in the case of normal form games.

Shimoji and Watson (1998) recognize that their result analysis extends to games
with incomplete information but do not spell out this extension. In our model, we say
that a strategy σi is conditionally dominated at some history if there exists another
strategy σ̂i that prescribes a different behavior at that history and potentially at
some of its successors and agrees with σi at any other history, such that for any
strategy σj that is consistent with that history and any system of beliefs consistent
with Bayes’ rule, σ̂i yields a strictly higher expected continuation payoff than σi.

Proof of Theorem 2.A. We show that for sufficiently high λ2
G, (σ0, σπ∗(λ2

G)) is the
unique strategy profile that survives iterated deletion of conditionally dominated
strategies.

First, assume that λB = 0 and 2τ ∗(λ2
G) < τ ∗(λ1

G). By Lemma 1, this inequality
holds for sufficiently high λ2

G. Recall that by Lemma 2, in any equilibrium firm i

continues operations as long as its belief is above π∗(λiG). As a result, firms’ beliefs
at any time before τ ∗(λ2

G) are uniquely determined by their private history.
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We now argue that regardless of firm 1’s belief about firm 2’s strategy, firm 1’s
posterior along the history with no exit is bounded above π∗(λ1

G) at any time before
τ ∗(λ1

G).
To this end, we start by showing that at any time t ≤ τ ∗(λ1

G), for any strategy of
firm 2 that survived our first round of deletion, the probability that firm 2’s posterior
belief is equal to some p ∈ [0, π∗(λ2

G)) is higher in the bad state than in the good
state, provided that λ2

G is taken to be arbitrary high. This implies that along the
history with no exit, observational learning always brings good news, and firm 1’s
private belief is a lower bound on its posterior belief. The details of the argument
are relegated to Section A.1.1, but here we provide some intuition.

If firm 1 expects firm 2 to play a cutoff strategy, as in Rosenberg et al. (2007) and
Murto and Välimäki (2011), observational learning always brings good news, that is,
firm 2 continuing operation makes firm 1 more optimistic. In fact, the distribution
of firm 2’s posterior belief conditional on the good state first-order stochastically
dominates the distribution of firm 2’s posterior belief conditional on the bad state.
Once one allows for any non-cutoff strategy, this does need to be true. However, in
the limit as λ2

G goes to infinity, two things happen. First, the distribution of firm 2’s
posterior beliefs conditional on either state converges to a degenerate distribution
concentrated on either 0 or 1. Second, the range of beliefs for which exiting is not a
dominated action shrinks, since π∗(λ2

G)→ 0. As a result, even if firm 1 expects firm
2 to play a non-cutoff strategy, the probability of firm 2 exiting conditional on the
prevailing state being bad is higher than the probability of firm 2 exiting conditional
on the state being good. It follows that exiting before τ ∗(λ1

G) is a dominated action
for firm 1 and that firm 2’s belief at any time before τ ∗(λ1

G) is uniquely determined
by its private history.

Consider the case in which firm 2 does not observe any customer in the inter-
val [0, τ ∗(λ2

G)). At time τ ∗(λ2
G), the expected continuation payoff of firm 2 from

remaining in the market forever is bounded above by

∫ τ∗(λ1
G)

τ∗(λ2
G)

e−r(t−τ
∗(λ2

G))
(
π∗(λ2

G)e−γ(t−τ∗(λ2
G))λ2

GR− c
)

dt

+ e−r(τ
∗(λ1

G)−τ∗(λ2
G))
(
π∗(λ2

G)e−γ(τ
∗(λ1

G)−τ∗(λ2
G)) (λ1

G + λ2
G)R− c
r

)
.
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The expression above is the continuation payoff of firm 2 at time τ ∗(λ2
G) in the

hypothetical scenario in which firm 1 exits with probability one at time τ ∗(λ1
G).

At that time, firm 2 perfectly learns the state of the world such that, conditional
on ωτ∗(λ1

G) = B, it exits with no delay. Clearly, this is an upper bound on the
continuation payoff of firm 2 for any undominated strategy adopted by firm 1.

Observe that by the definition of τ ∗(λ2
G), the integrand is negative; thus the first

term is negative. By Lemma 3, as λ2
G →∞, π∗(λ2

G)λ2
G → 0. Hence, for sufficiently

high λG2 , the expected continuation payoff is negative. We can then conclude that
conditional on not observing any customer in [0, τ ∗(λ2

G)), it is dominant for firm 2

to exit at time τ ∗(λ2
G).

Consider now the case in which the posterior belief of firm 2 at time 2τ ∗(λ2
G) is

again π∗(λ2
G). In this case, the expected continuation payoff from remaining in the

market is bounded above by∫ τ∗(λ1
G)

2τ∗(λ2
G)

e−r(t−2τ∗(λ2
G))
(
π∗(λ2

G)e−γ(t−2τ∗(λ2
G))λ2

GR− c
)

dt

+ e−r(τ
∗(λ1

G)−2τ∗(λ2
G))
(
π∗(λ2

G)e−γ(τ
∗(λ1

G)−2τ∗(λ2
G)) (λ1

G + λ2
G)R− c
r

)
.

(8)

By the same argument as above, for sufficiently high λ2
G, the expected contin-

uation payoff is negative and exit is dominant for firm 2. A fortiori, for any
t ∈ (τ ∗(λ2

G), 2τ ∗(λ2
G)], it is dominant for firm 2 to exit whenever its belief falls

short of π∗(λ2
G).

In the case of conclusive news, if firm 1 does not observe an exit at 2τ ∗(λ2
G), it

is dominant for it not to exit before τ ∗(λ1
G) + τ ∗(λ2

G). In fact, at that time, firm
1 infers that the belief of firm 2 never fell below the cutoff π∗(λ2

G) in [0, 2τ ∗(λ2
G)).

Moreover, in the worst-case scenario, firm 2 observed a customer “right after” τ ∗(λ2
G)

(see Figure 7). Consequently, the posterior belief of firm 1 is bounded away from
π∗(λ1

G) at any time before τ ∗(λ1
G)+τ ∗(λ2

G), and by Lemma 1 remaining in the market
is dominant at those times.

To show the desired result, we apply conditional dominance argument recursively.
More formally, for any n = 3, 4, . . . , firm 2 finds it dominant to exit at any t ∈
[(n− 1) τ ∗(λ2

G), n τ ∗(λ2
G)) onces its belief falls short of π∗(λ2

G); in fact, for any n, the
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payoff from staying in the market is bounded above by

∫ (n−2)τ∗(λ2
G)+τ∗(λ1

G)

nτ∗(λ2
G)

e−r(t−nτ
∗(λ2

G))
(
π∗(λ2

G)e−γ(t−nτ∗(λ2
G))λ2

GR− c
)

dt

+ e−r(τ
∗(λ1

G)−2τ∗(λ2
G))
(
π∗(λ2

G)e−γ(τ
∗(λ1

G)−2τ∗(λ2
G)) (λ1

G + λ2
G)R− c
r

)
.

Again, for sufficiently high λ2
G, this bound is negative and exiting is dominant for

firm 2. Given this, firm 1 finds it dominant not to exit at all t ∈ [(n−1) τ ∗(λ2
G), (n−

1) τ ∗(λ2
G) + τ ∗(λ1

G)), irrespective of its private history.
For the case of inconclusive news, we can again apply the limit argument we

used in the proof of Theorem 1 to show that (σ0, σπ∗(λ2
G)) is the unique outcome

that survives iterated deletion of conditionally dominated strategies. In this case,
at time 2τ ∗(λ2

G), the continuation payoff of firm 2 is bounded above by (omitting
the dependence of π∗ and τ ∗ on λB)

∫ τ∗(λ1
G)

2τ∗(λ2
G)

e−r(t−2τ∗(λ2
G))

((
π∗(λ2

G)e−γ(t−2τ∗(λ2
G))λ2

G +
(

1− π∗(λ2
G)e−γ(t−2τ∗(λ2

G))
)
λ2
B

)
R− c

)
dt

+ e−r(τ
∗(λ1

G)−2τ∗(λ2
G))
(
π∗(λ2

G)e−γ(τ
∗(λ1

G)−2τ∗(λ2
G)) (λ1

G + λ2
G)R− c
r

)
.

Recall that this is the continuation payoff at time 2τ ∗(λ2
G) in the hypothetical sce-

nario in which firm 1 exits with probability one at time τ ∗(λ1
G); at that time, firm

2 perfectly learns the state and exits with no delay if ωτ∗(λ1
G) = B, because by as-

sumption, (λ1
B + λ2

B)R < 0. Again, the integrand is negative, and by Lemma 3, the
second term converges to zero as λ2

G →∞. As a result, exiting is dominant for firm
2 at any time before 2τ ∗(λ2

G) once its beliefs fall short of π∗(λ2
G). Then, by the limit

argument, for sufficiently high λ2
G, the belief of firm 1 is bounded away from π∗(λ1

G)

at any time in [τ ∗(λ1
G), τ ∗(λ1

G)+τ ∗(λ2
G)). Hence, it is dominant for firm 1 not to exit

before τ ∗(λ1
G) + τ ∗(λ2

G). The remainder of the proof follows from the same recursive
argument as in the previous part.
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If being a monopolist is profitable in both states, that is, (λ1
B + λ2

B)R − c > 0,
then the relevant bound becomes∫ τ∗(λ1

G)

2τ∗(λ2
G)

e−r(t−2τ∗(λ2
G))
((
π∗(λ2

G)e−γ(t−2τ∗(λ2
G))λ2

G

+
(

1− π∗(λ2
G)e−γ(t−2τ∗(λ2

G))
)
λ2
B

)
R− c

)
dt

+ e−r(τ
∗(λ1

G)−2τ∗(λ2
G))
(
π∗(λ2

G)e−γ(τ
∗(λ1

G)−2τ∗(λ2
G)) (λ1

G + λ2
G)R− c
r

)
+ e−r(τ

∗(λ1
G)−2τ∗(λ2

G))
((

1− e−γ(τ∗(λ1
G)−2τ∗(λ2

G))π∗(λ2
G)
) 2λBR− c

r

)
.

Note that as λ2
G → ∞, τ ∗(λ2

G) → 0, and π∗(λ2
G)λ2

G → 0. Hence, in the limit, as
λ2
G →∞, the bound converges to

1− e−rτ∗(λ1
G)

r
(λ2

GR− c) +
e−rτ

∗(λ1
G)

r
(2λBR− c). (9)

From equation (5) (see also Lemma 9 below),

τ ∗(λ1
G) ≥ 1

γ1 + λ1
G − λB

ln

(
(λ1

G − λB)((λ1
G + γ)R− c)

γ(c− λBR)

)
.

Replacing τ ∗(λ1
G) with this bound in equation (9), we obtain

−c− λBR
r

+
λBR

r

(
(λ1

G − λB)((λ1
G + γ)R− c)

γ(c− λBR)

)− r

γ+λ1
G
−λB

. (10)

We now claim that there exists a set of λ1
G such that this bound is negative. Assume

that r > γ + λB. Then, if λ1
G = 2λB, equation (10) can be shown to be strictly

negative. By continuity, we can then conclude that there exists a set of pairs L ∈
(c/R,∞)× (c/R,∞), λ2

G > λ1
G, for which (σ1

0, σ
2
π∗(λ2

G)
) is the unique equilibrium.

me

A.1.1 Complements to the Proof of Theorem 2.A

Let σ2 be a strategy for firm 2 that prescribes remaining in the market when the its
posterior belief is strictly higher than π∗(λ2

G). We prove that for any such a strategy,
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for λ2
G large enough, observing firm 2 exiting always brings bad news to a firm 1

that has not observed any customer.
First, fix any time t > τ ∗(λ2

G), and assume that the strategy σ2 prescribes exiting
at t if and only if Pr[ωt = G | (N2

s )s≤t] = p, where p ∈ (0, π∗(λG2 )].

Lemma 8. For any λ1
G, there exists a λ

2

G such that for any λ2
G > λ

2

G, any p ∈
(0, π∗(λ2

G)], and any t ∈ (τ ∗(λ2
G), τ ∗(λ1

G)],

Pr
[
ωt = G | N1

t = 0,Pr[ωt = G | (N2
s )s≤t] = p

]
Pr
[
ωt = B | N1

t = 0,Pr[ωt = G | (N2
s )s≤t] = p

] < Pr [ωt = G | N1
t = 0]

Pr [ωt = B | N1
t = 0]

.

Proof. For any λ2
G, the likelihood ratio on the left-hand side can be written as

Pr
[
N1
t = 0,Pr[ωt = G | (N2

s )s≤t] = p | ωt = G
]

Pr
[
N1
t = 0,Pr[ωt = G | (N2

s )s≤t] = p | ωt = B
] e−γt

(1− e−γt).

The numerator is equal to

e−γt Pr
[
N1
t = 0 | ωt = G

]
Pr
[
Pr[ωt = G | (N2

s )s≤t] = p | ωt = G
]

= e−γte−(γ+λ1
G)t p

1− p Pr
[
Pr[ωt = G | (N2

s )s≤t] = p | ωt = B
]
.

Combining these observations, the posterior likelihood ratio is bounded above by

e−(γ+λ1
G)t p

1−p Pr
[
Pr[ωt = G | (N2

s )s≤t] = p | ωt = B
]

Pr
[
Pr[ωt = G | (N2

s )s≤t] = p,N1
t = 0 | ωt = B

]
(1− e−γt)

which is lower than the left-hand side in the statement, that is, lower than

e−(γ+λ1
G)t

γ
γ+λ1

G−λ1
B

(e−λBt − e−(γ+λ1
G)t)

provided that λ2
G is high enough, as p ≤ π∗(λ2

G).

Lemma 8 readily generalizes to the case when the strategy σ2 prescribes exiting
at t if and only if Pr[ωt = G | (N2

s )s≤t] ∈ E ⊆ (0, π∗(λG2 )], and to the case of mixed
strategies.

These observations imply that, regardless of firm 1’s belief about firm 2’s strategy,
firm 1’s posterior along the history with no exit is bounded above π∗(λ1

G) at any
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time before τ ∗(λ1
G). Hence, along the history with no exit, remaining in the market

at any time t ≤ τ ∗(λ1
G) is a dominant action for firm 1.

As explained in the proof of Theorem 2.A, the game exhibits a recursive struc-
ture. As a result, once we prove that at any t ≤ 2τ ∗(λ2

G), exiting is dominant for
firm 2 whenever its belief is below π∗(λ2

G), Lemma 8 implies that along any his-
tory with no exit, the belief of firm 1 is bounded away from π∗(λ2

G) at any time
t ∈ [τ ∗(λ2

G), τ ∗(λ2
G) + τ ∗(λ1

G)). Therefore, remaining on the market is a dominant
action. The same argument applies at each of the countably many rounds of dele-
tion.

Proof of Theorem 2.B. First, for any c and R, we can choose λ2
G arbitrarily close to

c/R such that 2τ ∗(λ1
G) < τ ∗(λ2

G).
Second, we show that for firm 1, exiting before τ ∗(λG1 ) is a dominated action.

As in Theorem 2.A, we argue that firm 1’s posterior along the history with no
exit is bounded above π∗(λ1

G) at any time before τ ∗(λ1
G). The formal proof is in

Section A.1.2. Here we provide an informal argument.
We show that in the limit as R/c → ∞ and γ → ∞, for λ2

G appropriately
chosen, firm 2 not exiting always brings good news to firm 1, regardless of which
strategy firm 1 expects firm 2 to play, among the strategies surviving our first round
of deletion. Intuitively, the inference that firm 1 draws from observing the action of
firm 2 always concerns the state at some point in time in the past, not about the
prevailing state. Hence, as γ →∞, this inference plays a limited role in determining
firm 1’s posterior belief, which can be shown to be bounded away from π∗(λ1

G) at
any time before the first exit time τ ∗(λ1

G).
Third, proceeding as in the proof of Theorem 2.A, we show that (8) is negative

provided that R/c and r sufficiently high. That is,

∫ τ∗(λ1
G)

2τ∗(λ2
G)

e−r(t−2τ∗(λ2
G))
(
π∗(λ2

G)e−γ(t−2τ∗(λ2
G))λ2

GR− c
)

dt

+ e−r(τ
∗(λ1

G)−2τ∗(λ2
G))
(
π∗(λ2

G)e−γ(τ
∗(λ1

G)−2τ∗(λ2
G)) (λ1

G + λ2
G)R− c
r

)
< 0.

Again, by the definition of π∗(λ2
G), the first term is negative. By Lemma 9, for

sufficiently high R/c and r > λ1
G, the second term converges to zero whenever λ2

G

is chosen to be arbitrarily close to c/R. Crucially, the first integral in the equa-
tion above remains bounded away from zero as we take this limit because τ ∗(λ1

G)
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is increasing in R/c. Following the same steps as before, we can then prove that
(σ1

0, σ
2
π∗(λ2

G)
) is the unique strategy profile that survives iterated deletion of domi-

nated strategies.

Lemma 9. If r > λ1
G,

e−(r+γ)τ∗(λ1
G)λ

1
GR

r
→ 0,

as R→∞ or c→ 0.

Proof. We will derive a lower bound for τ ∗(λ1
G) by identifying an upper bound for

π∗(λ1
G). From (5), replacing v(j(π∗(λiG))) with 0, we obtain

τ ∗(λ1
G) ≥ 1

γ + λ1
G

ln

(
−λ

1
G

r
+
γ + λ1

G

γ
· λ

1
GR

c

)
.

Hence,

e−(r+γ)τ∗(λ1
G)λ

1
GR

r
≤
(
−λ

1
G

r
+
γ + λ1

G

γ
· λ

1
GR

c

)− γ+r

γ+λ1
G λ1

GR

r
.

If r > λ1
G, the right-hand side converges to 0 as R → ∞ or c → 0. In fact, the

necessary condition for the right-hand side to converge to 0 is that as R→∞, R/c
converges to infinity in the order O(R).

A.1.2 Complements to the Proof of Theorem 2.B

Abusing notation, let τ ∗(λiG, γ) and π∗(λiG, γ) be the first exit time and the cutoff
belief as a function of the customer arrival rate and the rate of transition to the bad
state, γ. Notice that τ ∗(λiG, γ) is monotonically decreasing in γ.

Lemma 10. For γ and R high enough, there exists an open set of pairs (λ1
G, λ

2
G) ∈

(c/R,∞) × (c/R,∞) such that λ2
G < λ1

G, τ ∗(λ2
G, γ) < τ ∗(λ1

G, γ), and for any p ∈
(0, π∗(λ2

G, γ)] and any t ∈ (τ ∗(λ2
G, γ), τ ∗(λ1

G, γ)],

Pr
[
ωt = G | N1

t = 0,Pr[ωt = G | (N2
s )s≤t] = p

]
Pr
[
ωt = B | N1

t = 0,Pr[ωt = G | (N2
s )s≤t] = p

] < Pr [ωt = G | N1
t = 0]

Pr [ωt = B | N1
t = 0]

.
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Proof. Proceeding as in the proof of Lemma 8, the left-hand side is bounded above
by the following

e−(λ1
G+λ2

G+γ)τ∗(λ2
G,γ)

γ
λ1
G+λ2

G+γ

(
1− e−(λ1

G+λ2
G+γ)τ∗(λ2

G,γ)
) , (11)

while the right-hand side is

e−(λ1
G+γ)t

γ
λ1
G+γ

(
1− e−(λ1

G+γ)t
) . (12)

First, as argued in the proof of Theorem 2.B, λ2
G can be chosen to be arbitrarily close

to c/R so that (11) is arbitrarily close to zero. Second, because the first exit time is
strictly decreasing in γ and strictly increasing in R, for any γ, R can be chosen so
that γmaxλiG τ

∗(λiG, γ) > k, where k > 0 is an arbitrary constant. As a result, for
any γ and R high enough, choosing λ1

G arbitrarily close to arg maxλiGτ
∗(λiG, γ), (12)

is bounded away from zero.

Proof of Proposition 2. We show that if (8) is negative for some c2, then it is also
negative for c2′ > c2. Abusing notation, let τ ∗(λ2

G, c
2) and π∗(λ2

G, c
2) be the first

exit time and the cutoff belief as a function also of the operating cost c2. If

∫ τ∗(λ1
G,c

1)

2τ∗(λ2
G,c

2)

e−r(t−2τ∗(λ2
G,c

2))
(
π∗(λ2

G, c
2)e−γ(t−2τ∗(λ2

G,c
2))λ2

GR− c2
)

dt

+e−r(τ
∗(λ1

G,c
1)−2τ∗(λ2

G,c
2))
(
π∗(λ2

G, c
2)e−γ(τ

∗(λ1
G,c

1)−2τ∗(λ2
G,c

2)) (λ1
G + λ2

G)R− c2

r

)
< 0,

then exiting at 2τ ∗(λ2
G, c

2) following a history with no customer is dominant for
firm 2 also when its cost is c2′ > c2. Hence, if firm 1 does not observe an exit at
2τ ∗(λ2

G, c
2), it is dominant for it not to exit before τ ∗(λ1

G, c
2) + τ ∗(λ2

G, c
1), regardless

of the operating cost of firm 2. Applying the logic recursively, we can delete all
strategies of firm 1 but σ1

0. Then, any strategy of firm 2 other than σ2
π∗(λ2

G,c
2′)

can
be deleted. It follows that the only strategy profile that survives iterated deletion
of dominated strategies is (σ1

0, σ
2
π∗(λ2

G,c
2′)

). For the case of inconclusive news, the
result follows from combining the argument above and the limit in the proof of
Theorem 2.A.
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Last, the proof of the comparative statics result with respect to r2 follows from
a similar argument.

A.2 Proofs for Section 3.2

With some abuse of notation, we denote by σjp the pure strategy that prescribes
exiting once the public belief about the prevailing state falls below a cutoff p > 0.
Proceeding as in the Section 4.1, we start by analyzing firm i’s best-reply problem
to σj0. In the continuation region, the value function of firm i when best replying to
σj0 satisfies the following Hamilton-Jacobi-Bellman equation

rvi(p) = p (λiG + λjG)
(
vi (j (p))− vi(p)

)
− c+ pλiGR

−
(
p(1− p)(λiG + λjG) + pγ

)
vi′(p).

As a result, whenever λiG > c/R, the optimal cutoff of firm i satisfies the following
equation

π̊∗(λiG, λ
j
G) =

c(
λiG + λjG

)
vi
(
j(̊π∗(λiG, λ

j
G))
)

+ λiGR
(13)

Note that in contrast to the case of unobservable customers, the optimal cutoff
of firm i depends on both λiG and λjG. In fact, using the implicit function theo-
rem, it is readily verified that π̊∗(λiG, λ

j
G) is decreasing both in λiG and in λjG, and

limλiG→∞ π̊
∗(λiG, λ

j
G) = limλjG→∞

π̊∗(λiG, λ
j
G) = 0.

It can be shown that, again, π̊∗(λiG, λ
j
G) < 1 if and only if λiGR > c.

Claim 1. If λ2
G > λ1

G, π̊∗(λ1
G, λ

2
G) > π̊∗(λ2

G, λ
1
G).

Proof. The value functions of the two firms are ranked pointwise, while the function
j is identical for both of them. It follows that π̊∗(λ1

G, λ
2
G) > π̊∗(λ2

G, λ
1
G).

Proof of Proposition 1. By the same argument as in Lemma 2, in any equilibrium,
it is dominant for firm i to exit whenever the belief is strictly above π̊∗(λiG, λ

j
G). If

λ2
G > λ1

G, then π̊∗(λ1
G, λ

2
G) > π̊∗(λ2

G, λ
1
G), and by the same argument as in Theorem 1

the strategy profile (σ1
π̊∗(λ1

G,λ
2
G)
, σ2

0) is an equilibrium.
To show that it is the unique equilibrium provided that R/c is high enough

and λ1
G is low enough, we show that when the belief is equal to π̊∗(λ1

G, λ
2
G), firm 1
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finds it dominant to exit. Note that the continuation payoff of firm 1 at a belief of
π̊∗(λ1

G, λ
2
G) is bounded above by

∫ ln

(
Ω̊(π̊∗(λ2

G,λ
1
G))

Ω̊(π̊∗(λ1
G
,λ2
G

))

)
γ+λ1

G
+λ2

G
−2λB

0

e−rt
( (̊
π∗(λ1

G, λ
2
G)e−γtλG1 +

(
1− π̊∗(λ1

G, λ
2
G)e−γt

)
λB
)
R

− c
)

dt

+ e
−r

ln

(
Ω̊(π̊∗(λ2

G,λ
1
G))

Ω̊(π̊∗(λ1
G
,λ2
G

))

)
γ+λ1

G
+λ2

G
−2λB

(
π̊∗(λ1

G, λ
2
G)e

−γ
ln

(
Ω̊(π̊∗(λ2

G,λ
1
G))

Ω̊(π̊∗(λ1
G
,λ2
G

))

)
γ+λ1

G
+λ2

G
−2λB

(λ1
G + λ2

G)R− c
r

+

(
1− π̊∗(λ1

G, λ
2
G)e

−γ
ln

(
Ω̊(π̊∗(λ2

G,λ
1
G))

Ω̊(π̊∗(λ1
G
,λ2
G

))

)
γ+λ1

G
+λ2

G
−2λB

)
max{2λBR− c, 0}

r

)
(14)

where

Ω̊(p) =
γ + (1− p)(λ1

G + λ2
G − 2λB)

p
.

If r > λ1
G + λ2

G − 2λB,

e
−(r+γ)

ln

(
Ω̊(π̊∗(λ2

G,λ
1
G))

Ω̊(π̊∗(λ1
G
,λ2
G

))

)
γ+λ1

G
+λ2

G
−2λB

(λ1
G + λ2

G)R− c
r

=

(
Ω̊(̊π∗(λ2

G, λ
1
G))

Ω̊(̊π∗(λ1
G, λ

2
G))

) r+γ

γ+λ1
G

+λ2
G
−2λB (λ1

G + λ2
G)R− c
r

<

(
Ω̊(c/(λ2

GR))

Ω̊(̊π∗(λ1
G, λ

2
G))

) r+γ

γ+λ1
G

+λ2
G
−2λB (λ1

G + λ2
G)R− c
r

.

Because

lim
R→∞

(
Ω̊(c/(λ2

GR))
) r+γ

γ+λ1
G

+λ2
G
−2λB

(λ1
G + λ2

G)R− c
r

= lim
c→0

(
Ω̊(c/(λ2

GR))
) r+γ

γ+λ1
G

+λ2
G
−2λB

(λ1
G + λ2

G)R− c
r

= 0,

and since π̊∗(λ1
G, λ

2
G) can be taken to be arbitrarily close to 1 provided that λ1

G is
sufficiently small, the second term in equation (14) converges to zero. As a result,
exiting at the cutoff belief π̊∗(λ1

G, λ
2
G) is dominant for firm 1, and (σ1

π̊∗(λ1
G,λ

2
G)
, σ2

0) is
the unique equilibrium.
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It is easy to construct parametric examples for which λ2
G > λ1

G, and (σ1
0, σ

2
π̊∗(λ2

G,λ
1
G)

)

is not an equilibrium because at the belief π̊∗(λ1
G, λ

2
G), firm one prefers to exit rather

than waiting to benefit from monopoly profits. The following lemma describes the
construction of the mixed strategy equilibrium we discussed in Section 3.2.

Lemma 11. Suppose that λ2
G > λ1

G and λB = 0. If both (σ1
0, σ

2
π̊∗(λ2

G,λ
1
G)

) and
(σ1

π̊∗(λ1
G,λ

2
G)
, σ2

0) are equilibria, there exists a mixed strategy equilibrium such that

(i) firm 2 exits with probability q > 0 when the posterior belief is equal to π̊∗(λ2
G, λ

1
G);

(ii) both firms exit at a positive rate when the belief belongs to (π‡(λ2
G+λ1

G), π̊∗(λ2
G, λ

1
G)),

where π‡(λ2
G + λ1

G) > 0 is the belief at which a monopolist optimally exits.

Proof. Recall that vi : [0, 1] → R denotes the payoff associated with firm i’s best
reply to σj0. Let W : [0, 1]→ R denote the payoff associated with the monopolist’s
problem.

The equilibrium we construct yields ex-ante expected payoffs equal to (v1(1), v2(1)).
The probability q is chosen such that at the belief π̊∗(λ1

G, λ
2
G), firm 1 is indifferent

between exiting and waiting to exit as soon as the belief falls short of π̊∗(λ2
G, λ

1
G),

provided that firm 2 does not exit then. That is, q satisfies

∫ ln

(
Ω̊(π̊∗(λ2

G,λ
1
G))

Ω̊(π̊∗(λ1
G
,λ2
G

))

)
γ+λ1

G
+λ2

G

0

π̊∗(λ1
G, λ

2
G)e−(γ+λ1

G+λ2
G)t(λ1

G + λ2
G)

(
λG1

λG1 + λG2
e−rtR + e−rtv1(1)

− 1− e−rt
r

c

)
dt

+

1− λ1
G + λ2

G

λ1
G + λ2

G + γ
π̊∗(λ1

G, λ
2
G)

1− e−(λ1
G+λ2

G+γ)
ln

(
Ω̊(π̊∗(λ2

G,λ
1
G))

Ω̊(π̊∗(λ1
G
,λ2
G

))

)
γ+λ1

G
+λ2

G




−c
r

1− e−r
ln

(
Ω̊(π̊∗(λ2

G,λ
1
G))

Ω̊(π̊∗(λ1
G
,λ2
G

))

)
γ+λ1

G
+λ2

G

+ e
−r

ln

(
Ω̊(π̊∗(λ2

G,λ
1
G))

Ω̊(π̊∗(λ1
G
,λ2
G

))

)
γ+λ1

G
+λ2

G qW
(̊
π∗(λ2

G, λ
1
G))
) = 0.

Clearly, exiting at some belief in (̊π∗(λ2
G, λ

1
G), π̊∗(λ1

G, λ
2
G)) is suboptimal. At any

belief p ∈ (π‡(λ2
G + λ1

G), π̊∗(λ2
G, λ

1
G)), firm i exits at a rate

−
p(λG1 + λG2 )

(
λjG

λG1 +λG2
R + vj(1)

)
− c

W (p)
.
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It can be verified that this rate is positive and bounded for any p ∈ (π‡(λ2
G +

λ1
G), π̊∗(λ2

G, λ
1
G)). Consequently, along a path with no costumers, there is a strictly

positive probability that both firms remain in the market once the belief reaches
any given p ∈ (π‡(λ2

G + λ1
G), π̊∗(λ2

G, λ
1
G)). However, because the rate diverges to

infinity at π‡(λ2
G + λ1

G), as the denominator converges to zero, no firm will remain
in the market at a belief lower than the monopoly cutoff. The rate is chosen to
guarantee that each firm is indifferent between exiting and remaining in the market
and exiting in the next instant if no customer arrives.
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