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Abstract

We study dynamic games in which senders with state-independent payoffs communi-
cate to a single receiver. Senders’ private information evolves according to an aperiodic
and irreducible Markov chain. We prove an analog of a folk theorem—that any feasible
and individually rational payoff can be approximated in a perfect Bayesian equilibrium
if players are sufficiently patient. In particular, there are equilibria in which the receiver
makes perfectly informed decisions in almost every period, even if no informative com-
munication can be sustained in the stage game. We conclude that repeated interaction
can overcome strategic limits of communication.
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1 Introduction
Crawford and Sobel (1982) introduced cheap-talk games as a basis for the analysis of strategic
transmission of unverifiable information. They considered a one-shot game between a sender
who has private information and a receiver who takes an action. In equilibrium, informative
communication can be sustained, but misalignment of players’ interests limits the amount
of information that can be transmitted. In particular, if players’ preferences are misaligned,
truthful communication of private information cannot be sustained; otherwise, the sender
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would bias reports to induce her preferred outcomes. The strategic considerations restrain
communication and translate into inefficiency as both players could benefit from a better-
informed action.

The strategic limits of communication highlighted in a one-shot game provide insights
into many economic situations. A buyer relies more on the recommendation of a friend than
that of a sales representative; an antitrust legislator takes arguments of firms opposing a
newly proposed regulation with a grain of salt; a voter feels skeptical about the promises of
a politician running for office. Nonetheless, in many settings in which interests are seemingly
misaligned, informative communication is sustained: companies raise funds from investors,
government agencies successfully split the state budget, conglomerates allocate resources
among different divisions, and so on. In many of these cases, the informed parties have strong
biases so that their payoffs are determined solely by the resulting decisions.1 Importantly,
all of these interactions happen repeatedly over time, with the parties trading off immediate
opportunistic gains for the prospect of an ongoing relationship.

To investigate informative communication in these settings, we analyze a dynamic version
of an information transmission game in which private information (states) evolve stochas-
tically over time. We allow for many senders but focus on the case in which the senders’
payoffs are state independent. In every period, each sender sends a message to the receiver,
who then takes a publicly observable action. The “cheap-talk” nature of messages is pre-
served: no hard evidence can be presented, the sender cannot commit to a communication
strategy, and the receiver never observes extraneous information to test the validity of the
past messages. No contracts can be written between the players, so at any point in time it
must be in players’ interests to follow the equilibrium play.

We obtain an analog of a folk theorem—that any feasible and individually rational payoffs
can be approximated in a perfect Bayesian equilibrium as the players become patient.2 This
payoff set, and hence the set of equilibrium payoffs, admits a simple characterization and
includes all Pareto efficient payoffs that satisfy the receiver’s individual rationality. Specifi-
cally, it includes the receiver’s largest feasible “complete information” payoff. In equilibrium,
the fraction of periods in which the receiver makes perfectly informed decisions can be ar-
bitrarily close to one, even if no informative communication can be sustained in the stage
game.

These results contrast with the conventional wisdom that state independence makes
it harder to maintain informative communication. Indeed, in this case, each sender has
an unambiguous ranking over actions and is willing to report truthfully only if indifferent
among the messages she sends. However, what comes as a curse in a one-shot game turns
into a blessing when the game is dynamic. If senders’ payoffs depend only on actions and
not on states, then the receiver fully observes and controls the payoffs. Our equilibrium

1Chakraborty and Harbaugh (2010) provide many more examples of such strong biases.
2There is no standard formulation of a “folk theorem” in repeated games with incomplete information.
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construction actively uses this feature—it targets the senders’ total payoffs and ensures they
do not depend on the senders’ messages. To achieve it, the equilibrium play alternates
between communication and adjustment phases. In communication phases, the receiver
makes informed decisions relying on the senders’ messages. In adjustment phases, the receiver
ignores all messages and plays according to a strategy that pulls the senders’ payoffs towards
the target. Specification of the phases and the transitions between them is tailored to
guarantee that the senders’ payoffs do not depend on their messages, and thus sustains
truthtelling. By the law of large numbers, as players become more patient, the play occurs
in the communication phase most of the time and any individually rational payoffs can be
achieved by changing the strategy the receiver plays in there.

Related literature The general idea that an ongoing relationship can overcome strategic
limits of interaction is the cornerstone of the literature on repeated games as discussed in
depth by Mailath and Samuelson (2006). Further, the idea of using players’ payoffs as
a determinant of equilibrium construction is reminiscent of Abreu et al. (1990)’s recursive
technique of equilibrium payoff decomposition. In fact, if individual states are independently
and identically distributed, our dynamic game can be viewed as an infinitely repeated game
and the Fudenberg et al. (1994)’s standard method can be used to provide an alternative
proof of our folk theorem result. However, the standard method cannot be applied to general
stochastic sender-receiver games.

At the same time, the idea of linking decisions motivated a strand of mechanism design
literature. Jackson and Sonnenschein (2007) showed that Pareto efficient outcomes can be
achieved by linking many identical copies of a collective choice problem with private values
into a single mechanism. Frankel (2016) extended these ideas into a dynamic setting where
the sender has persistent private information. He introduced discounted quota contracts
similar to our equilibrium construction and showed their optimality in many environments.
The mechanism design setting, however, differs from ours in that it endows the receiver with
commitment power and monetary transfers.

Finally, the closest paper to ours is by Renault, Solan and Vieille (2013), who analyzed
a dynamic information transmission game between a single sender and a receiver. They
considered a more general payoff structure that, however, did not allow the sender’s payoff
to be state independent. In their setting, they showed that our analog of a folk theorem
does not generally hold. In particular, the players’ equilibrium payoffs do not necessarily
approach the Pareto efficiency frontier as the players become patient.

Neither Renault et al. (2013)’s nor our proof can be directly extended to cover both the
cases of state-dependent and of state-independent payoffs. On one hand, their construction is
based on the idea of statistical tests that require the sender to match the message distribution
with the state distribution. However, in our setting, because payoffs are state independent,
statistical tests cannot be used effectively; faced with these tests, the sender would induce
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favorable actions earlier in time independently of the realized states, rendering her messages
uninformative. On the other hand, our construction is based on the ability of the receiver
to adjust the senders’ continuation payoffs exactly to the target without knowing the state.3
When the payoffs are state dependent, such adjustment must depend on the state and hence
rely on the sender’s messages running into the same incentive compatibility problem.4

The remainder of the paper proceeds as follows: Section 2 introduces the model, Section
3 characterizes the equilibrium payoffs and discusses, and Section 4 concludes. Appendix
contains a detailed proof of the main theorem.

2 Model
A receiver (he) repeatedly communicates with n senders (she) indexed by i ∈ N = {1, . . . , n},
n ≥ 1. The stage game is described by the set of states Ω , ×i∈NΩi, their prior distribution
p ∈ ∆(Ω), the set of senders’ messages M , ×i∈NMi, the set of actions of the receiver A,
and the stage payoffs of the senders v : A→ Rn and of the receiver u : A×Ω→ R.5 Denote
the stage game by Γ , (N,Ω, p,M,A, v, u). We assume that the sets Ω,M, and A are all
finite. In the stage game, all senders first privately observe their individual states ωi ∈ Ωi

and then simultaneously send public messages mi ∈Mi to the receiver who takes a publicly
observable action a ∈ A.6

The stage game is infinitely repeated at times t = 1, 2, 3, . . . with a common discount
factor δ. The state profiles ωt , {ωt1, . . . , ωtn} evolve according to an irreducible and ape-
riodic Markov chain with a transition kernel k (ωt+1 | ωt). Hence, the individual states can
be arbitrarily correlated across senders but their intertemporal correlation vanishes as the
distance between time periods grows large. Consequently, there exists a unique stationary
distribution p ∈ ∆ (Ω) that has full support. We assume that the initial state is drawn
according to this stationary distribution.

We assume that the validity of senders’ messages can never be verified. First, no hard
evidence is allowed—the sets of possible messages Mi do not depend on the states. Second,
the senders cannot commit to communication strategies, in contrast to the Bayesian per-

3In the equilibria we construct, after every history each sender is indifferent between sending any message,
independently of the private histories observed by the other senders. Nevertheless, these equilibria are not
“belief-free” in the sense of Ely et al. (2005) as the same property does not hold for the receiver.

4Escobar and Toikka (2013) also studied limit payoffs with dynamic communication but their setting and
techniques are significantly different from ours. They focus on the case of independent private values, so the
players know their own payoffs. Their proof relies on statistical tests similar to those used by Renault et al.
(2013) which are of limited use in our setting.

5The single action of the receiver affects all senders’ payoffs at once. Hence, the problem with many
senders is not simply a collection of separate single-sender problems.

6We can dispense with the assumption that the messages are public if we allow the receiver to announce
the messages at the end of each period.
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suasion literature. Third, the receiver does not observe any additional information besides
the senders’ messages; for example, he does not observe any additional signals about past
states.7 We allow the players to perfectly transmit their private information, Mi = Ωi, thus
concentrating on strategic rather than technological limits of communication.8 Denote the
message profile by mt ∈M , ×i∈NMi . Lastly, we assume that there is a public randomiza-
tion device that produces a uniformly distributed output yt ∈ Y , [0, 1] at the beginning of
each period independently of states, and all players publicly observe it. We do not require
any public randomization at the interim stage, after the senders send their messages but
before the receiver takes an action.

Overall timing within each period of the dynamic game is as follows: the public random-
ization device produces an output yt; the state profile ωt realizes and each sender i privately
observes her individual state ωit; the senders simultaneously send messages mti to the re-
ceiver; the messages are publicly observed and the receiver takes an action at; the action is
publicly observed and the game proceeds to the next period. Denote the resulting dynamic
game by Γ∞ (δ).

Strategies The timing and monitoring structure of the game Γ∞ (δ) outlined above result
in the following definitions of histories and strategies. A public history ht at time t consists
of past actions, messages and the realizations of the randomization device.9 Denote the set
of all public histories at time t by H t. A behavioral strategy of the receiver, α, maps past
public history, current output of the randomization device and current messages into an
action,

ht , {ys,ms, as}t−1
s=1 , t > 1, h1 , ∅,

α :

(⋃
t≥1

H t

)
× Y ×M → ∆(A).

Senders’ private histories hti contain public histories as well as the individual states they
observe. Denote the set of private histories of a sender i by H t

i . A behavioral strategy of a
sender i, µi, maps her private histories and current output of the randomization device into

7This implies that the receiver does not observe his payoffs. This assumption is standard in repeated
games with incomplete information and can be justified in at least two ways. First, it can approximate the
situation when payoffs are observed far into the future. Second, the receiver may want to make informed
decisions even if she cannot ever confirm their accuracy just like a judge wants to acquit innocents.

8This assumption is still a priori restrictive because the players cannot commit to their strategies and
the revelation principle does not apply. However, it suffices to obtain a folk theorem.

9We adopt a convention that for any stochastic process x its time-t realization is denoted by subscript xt
and the history up to time t is denoted by superscript xt , {xs}ts=1.
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a message

hti , ht ∪ {ωsi}ts=1 ,

µi :

(⋃
t≥1

H t
i

)
× Y → ∆(Mi).

Payoffs Players’ interests are misaligned. The receiver’s stage payoff is state dependent,
u : A × Ω → R, so that he generally prefers to take different actions in different states.
The senders’ stage payoffs, in contrast, depend only on the receiver’s actions and not on the
states, vi : A → R. That is each sender had an optimal action that she prefers to be taken
in every state. All players discount the future at a common rate δ < 1. Given strategies
µ , {µi}i∈N and α, senders’ and receiver’s expected normalized payoffs (or simply payoffs)
can be written as

Vi (µ, α) = (1− δ)Eµ,α

[
∞∑
t=1

δt−1vi (at)

]
, i ∈ N,

U (µ, α) = (1− δ)Eµ,α

[
∞∑
t=1

δt−1u (at, ωt)

]
,

where the conditional expectations take into account the probability law induced by the
strategies of the players, evolution of states, and the randomization device.

The set of feasible payoffs in the dynamic game Γ∞ (δ), F ⊆ Rn+1, with a typical element
(V, U) consists of all players’ payoffs that can be achieved by some strategies µ, α. Because
the first state is drawn from the stationary distribution, the states in all periods are ex ante
identically distributed, and the set of feasible payoffs in the repeated game coincides with the
set of feasible payoffs in the stage game. This set is a polytope with finitely many vertices
and admits a simple characterization: it is equal to the convex hull of the payoffs in the
stage game resulting from all pure mappings from states into actions. Moreover, any payoff
(U, V ) ∈ F can be supported by a stage-game strategy a : Ω→ ∆(A) played in every period.

F = co {(Epv (a (ω)) ,Epu (a (ω) , ω)) | a : Ω→ A} . (1)

The set of individually rational payoffs, F ∗ ⊆ F , in the dynamic game Γ∞ (δ) consists
of all feasible payoffs such that all players get at least their minmax payoffs. The senders’
minmax payoffs are defined as minα,µ−i

maxµi Vi (α, µ) and the receiver’s minmax payoff
is defined as minµ maxα U (α, µ). Our payoff structure allows for a particularly tractable
characterization of F ∗. As the receiver can always ignore the senders’ messages his minmax
payoff is U , maxa∈A Ep [u(a, ω)] . At the same time, because the receiver fully controls the
senders’ payoffs, their individual rationality is innocuous. As a result,

F ∗ = {(V, U) ∈ F | U ≥ U} . (2)
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Our equilibrium concept is perfect Bayesian equilibrium as described by Fudenberg and
Tirole (1991). A strategy profile (µ, α), together with a system of beliefs, is a perfect Bayesian
equilibrium if µ is sequentially rational and Bayes’ rule is used to update beliefs whenever
possible.10 Denote by E (δ) ⊆ Rn+1 the set of equilibrium payoffs.

3 Folk Theorem
Our main result is a characterization of the limit set of equilibrium payoffs as players be-
come arbitrarily patient, limδ→1 E (δ). We obtain an analog of a folk theorem—any feasible,
individually rational payoff can be approximated in an equilibrium if players are sufficiently
patient.

A few observations are immediate. First, no payoff outside of F ∗ can be supported in
equilibrium—the receiver can always guarantee at least his minmax payoff. Second, there
are fully uninformative equilibria in the dynamic game Γ∞ in which all senders babble;
that is, they send messages independently of their states, and the receiver plays a myopic
best-response. The set of babbling payoffs belongs to the set of equilibrium payoffs for all δ.

Assumption 1. (Valuable Communication) There exists a vector (V, U) ∈ F ∗ such that
U > U .

Assumption 1 states that communication is valuable—the receiver can strictly benefit
from knowing the individual states. The assumption holds in most relevant economic en-
vironments. It is weaker than non-empty interior requirements in existing folk theorems,
as it applies to the receiver only. This assumption allows to provide incentives for the re-
ceiver to follow the expected equilibrium play by threatening to cease the communication
and permanently switch to babbling.

Theorem 1. (Folk Theorem) For any payoffs (V, U) ∈ relint (F ∗) there exists δ < 1 such
that for all δ > δ there is an equilibrium with payoffs (V, U).11 Consequently,

lim
δ→1

E (δ) = F ∗.

The detailed proof is relegated to the Appendix. Here we briefly outline its main ideas.
For any target payoff in F ∗ we pick the receiver’s strategy a : Ω → ∆(A) that supports it
in the stage game and construct an equilibrium in which senders report truthfully and the
receiver plays according to a most of the time.

10We imposed the standard restriction (B) in Fudenberg and Tirole (1991); because types are correlated,
condition (B) needs to be adjusted (see Fudenberg and Tirole, 1991, pp. 349-350).

11The relative interior of a set F ∗, relint(F ∗), is its interior under the topology induced on the affine hull
of F ∗. Hence the statement is meaningful even if F ∗ has a dimension lower than the number of players.
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In particular, the equilibrium play switches between communication and adjustment
phases. Transition between phases is determined by the senders’ accumulated payoffs, which
depend only on past actions and thus are publicly observed. In the communication phase,
each sender reports her individual state truthfully, and the receiver plays according to the
stage-game strategy a. In the adjustment phase, the receiver plays according to a strategy
that brings all senders’ discounted payoffs back to the target. The length and strategy of
the adjustment phase depend on the senders’ payoffs at the end of preceding communica-
tion phase and can always be chosen to hit the target as long as the players are sufficiently
patient. Any receiver’s randomization is done via the public randomization device so his
deviations are immediately observable and trigger permanent babbling play.

The exact specification of the phases and their transition is tailored to ensure the players’
obedience in following the equilibrium play. The senders are willing to report truthfully
because they are guaranteed to obtain the target payoffs irrespectively of their messages. The
receiver is effectively deferred from deviating by the assumption of valuable communication
if sufficiently patient.

As players become more patient, the length of the communication phase can be increased
and we can appeal to the law of large numbers for Markov chains. Hence, on average, there
is less adjustment to be made, so the play occurs in the communication phase most of the
time. As a result, the equilibrium payoffs approach the target payoffs.

Example 1. (Resource Allocation) We illustrate the setting and the results in a resource
allocation example. The receiver is a social planner who decides every period how to allocate
an indivisible resource between two ex-ante symmetric regions. The senders are local repre-
sentatives who privately observe the social values of allocating the resource to their region.
They report the values to the planner at a regular meeting. The planner wants to put the
resource to the best use and the representatives simply prefer having resource in their region.
The social values are independent across regions and positively but imperfectly correlated
across periods.

The example fits into our model by setting n = 2, A = {1, 2}; for i ∈ {1, 2}, Ωi =
{ω0, ω1}, vi (a) = 1 (a = i), k (ωi, ωj | ωi, ωj) = ρ2, and k

(
ωi, ω

′
j | ωi, ωj

)
= ρ (1−ρ), for ω′j 6=

ωj. Normalizing ω0
i = 0 and ω1

i = 1, u (a, ω) = ωa. Positive but imperfect correlation implies
ρ ∈ (1/2, 1) and corresponds to a uniform stationary distribution. The set of feasible and
individually rational payoffs can be calculated by (1) and (2), and is presented in Figure 1.
The set does not depend on the degree of correlation ρ and has an empty interior since the
feasibility of allocation requires V1 + V2 = 1.

The assumption of valuable communication is satisfied. In the absence of additional
information the planner is indifferent between allocating the resource to one region or another
and obtains a payoff U = 1/2. However, the resource allocation matters to representatives.
The “babbling” payoffs are generically Pareto inefficient and constitute a set

B = {(V, U) |V1 + V2 = 1, U = 1/2} .

8



1/41/23/4
1/4 1/2 3/4

1/4

1/2

3/4

V1V2

U

Figure 1: The set of feasible payoffs, F , with a typical element (V1, V2, U). Feasibility implies
that the set F lies on the plane V1 +V2 = 1. The shaded area indicates individually rational
payoffs F ∗.

If the stage game were played only once, then strategic considerations would restrain com-
munication and the babbling payoffs would be the only equilibrium payoffs. The argument
is standard. If the planner were to rely on a representative’s report then the representative
would communicate the report that maximizes a probability of getting the resource irrespec-
tively of its social value. This would in turn make the report uninformative and preclude
payoffs outside of B.

However, in a dynamic game any payoffs in F ∗ can be approximated in an equilibrium
if the players are sufficiently patient as shown in Theorem 1. According to our equilibrium
construction the planner should simply ensure the representatives of the total discounted
allocation to their regions irrespectively of their reports. It can be achieved by infrequently
shutting down the meetings and bringing the total discounted allocation back to the targets.
In this way, the resource is allocated efficiently in a fraction of periods arbitrarily close to
one.

�

To recapitulate, in the absence of any contract enforcement or message verification, almost
fully informed decision-making can be sustained in a dynamic game even if no informative
communication can be sustained in the stage game. Moreover, the result does not require
the payoff set to have a non-empty interior in contrast to most of existing folk theorems.
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4 Discussion
In this section we discuss two important features of our model that are necessary for our
equilibrium construction: ergodicity of state transitions and state-independence of senders’
payoffs.

Ergodicity It is crucial for our equilibrium construction that the Markov chain according
to which states evolve is ergodic, that is irreducible and aperiodic. Both of these properties
are important and ensure that even though the states can be correlated across periods, this
correlation vanishes as the distance between them grows. It gives the game its recurrent
structure and allows to split the equilibrium play in “almost independent” blocks. The
following example shows that the folk theorem result can fail if the chain is not irreducible.

Example 2. (Reducible Chain) Consider a game with a single sender, two states Ω =
{ω0, ω1}, and two actions A = {0, 1}. The payoff functions are v(a) = a, and u(a, ω) =
1(ω = ωa): the sender always prefers action 1 whereas the receiver wants to match the state.
In contrast to the previous analysis, the state is perfectly persistent, that is k (ω | ω) = 1.
The initial state ω1 is drawn according to the distribution (1− p0, p0), with p0 < 1/2.

We argue that the babbling payoff is the unique equilibrium payoff of the dynamic game
for any δ < 1. In fact, we show that it is the unique equilibrium payoff even if the receiver
could commit to his strategy. If the receiver can commit to his strategy, by the revelation
principle of Myerson (1986) any equilibrium payoff can be implemented by a direct mecha-
nism. In the mechanism, the sender truthfully announces the initial state and the receiver
follows a pre-committed dynamic strategy a : Ω → A∞. For a given (incentive compatible)
mechanism, the players’ expected payoff are

V = (1− p0) (1− δ)
∞∑
t=0

δt Pr
[
at
(
ω0
)

= 1
]

+ p0 (1− δ)
∞∑
t=0

δt Pr
[
at
(
ω1
)

= 1
]
,

U = (1− p0) (1− δ)
∞∑
t=0

δt Pr
[
at
(
ω0
)

= 0
]

+ p0 (1− δ)
∞∑
t=0

δt Pr
[
at
(
ω1
)

= 1
]

Since the sender’s payoffs are state-independent, incentive compatibility implies that she
must be indifferent between reporting states ω0 and ω1. Substituting into to the formula for
the receiver’s payoff we obtain that the mechanism is incentive compatible only if

U = 1− p0 − V (1− 2p0) .

The unique feasible individually rational payoff that satisfies this equation is the babbling
payoff (0, 1− p0). It follows the babbling payoff is also the unique equilibrium payoff of the
dynamic game in which the receiver cannot commit. �
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This example illustrates that when the state chain is aperiodic but reducible, the sender’s
incentive compatibility and the receiver’s individual rationality alone can preclude equilib-
rium communication. We conjecture that when the chain is irreducible but periodic, the folk
theorem result still fails with the receiver’s incentives playing an important role. For this
reason, constructing a specific counterexample in that case seems to be more complicated.

State-independent payoffs Another important assumption of our model is that the
senders’ payoffs do not depend on the state. One might think that our equilibrium con-
struction still works if the payoffs are “almost” state-independent. However, this is not the
case. In our equilibrium, the senders are indifferent between any history of messages and
report truthfully in equilibrium. If the payoffs are even slightly state-dependent then the
senders’ best-response can be far from truthtelling.

In fact, for a generic payoff perturbation one can apply the results of Renault et al. (2013)
to characterize the limit set of equilibrium payoffs, at least for the case of a single sender
and Markov chain satisfying their Assumption A. They show that the equilibrium payoffs
must satisfy the sender’s “incentive compatibility”—she shouldn’t be able to benefit from
permuting her reports. This constraint is ordinal and even small payoff perturbations can
drastically restrict the equilibrium payoff set.

5 Conclusion
We analyzed dynamic information transmission when senders’ payoffs are state independent.
We show that the strategic limits of communication prevalent in a stage-game disappear
when the interaction is repeated. Any individually rational payoffs can be approximated
in equilibrium if the players are sufficiently patient. This result complements the existing
results for state-dependent payoffs and provides a rationale for informative communication
to be sustained in a variety of dynamic economic settings between players with seemingly
misaligned interests. In fact, our equilibrium construction delivers a clear message on how
to do so—to induce truthtelling the receiver should track the senders’ payoffs and adjust
them whenever they are doing too good or too bad. This ensures the senders of their payoffs
irrespective of their reports and eliminates incentives to lie.

There are many opportunities for further research. First, the limit analysis for state-
dependent payoffs not captured by the previous literature should be completed. Second, one
can analyze the joint limit of state independency and patience. Finally, an important open
question is the general analysis of equilibrium payoffs when players are impatient. We suspect
that in this case finer details of Markov transition and not just its stationary distribution
will come into play.
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Appendix
Proof of Theorem 1
Without loss of generality, we normalize players’ payoffs so that minA vi(a) = 0, ∀i ∈ N , and
min(a,ω)∈A×Ω u(a, ω) = 0. Let vi , maxa∈A vi (a), and u , max(a,ω)∈A×Ω u(a, ω). Recall that

F ∗ = {(V, U) ∈ F | U ≥ U} .

where U = maxa∈A Ep [u(a, ω)]. Given any feasible and individually rational payoffs, we con-
struct an equilibrium that achieves payoffs arbitrarily close to it provided that δ is sufficiently
high. In particular, define

F ∗∗ , {(V, U) ∈ relint (F ∗)} .
and let |·| denote the Euclidean norm. For any (V, U) ∈ F ∗∗ there exists η > 0 such that
∀V ′ : |V ′ − V | ≤ η, V ′ ∈ F ∗∗. We will show that for any ε > 0 and any (V, U) ∈ F ∗∗, there
exists δ < 1 such that for all δ > δ we can construct an equilibrium (µ∗, α∗) of Γ∞ (δ) with
payoffs (V ∗, U∗), where V ∗ = V and |U∗ − U | < ε. Since we allow for a public randomization
device, the result of the theorem will follow.

In what follows, fix δ < 1, η > 0, the target payoff vector (V, U) ∈ F ∗∗, and the
corresponding supporting strategy a : Ω→ ∆(A).

Strategies We first describe the equilibrium strategies (µ∗, α∗). Fix some Tc ∈ N as a
function of δ such that limδ→1 δ

Tc(δ) = 1, limδ→1 Tc (δ) = ∞.12 The equilibrium play is
divided into consecutive blocks, each starting with a communication phase of length Tc
followed by an adjustment phase of (random) length Ta.

On the equilibrium path, the behavior within each block is described by strategies
(µ1, α1). According to µ1, the senders always report truthfully. According to α1, the re-
ceiver’s behavior depends on the current phase within a block. In the communication phase,
he plays according to the strategy a. In the adjustment phase, he ignores the senders’ re-
ports and plays according to an adjustment strategy that depends on the profile of senders’
normalized discounted payoffs at the end of the communication phase,

v̄c ,
1− δ

1− δTc

Tc∑
t=1

δt−1v (at) ,

and the target payoff vector V . In particular, define (Figure 2)

λ(v̄c) ,
v̄c − V
|v̄c − V |

, Va(v̄c) , V − λ(v̄c)η .

12For example, Tc(δ) =
⌈
(1− δ)−1/2

⌉
. In what follows we will often omit dependence of Tc on δ.
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Figure 2: The choice of adjustment payoffs Va given the realized senders’ payoff at the end
of the communication phase v̄c and the target equilibrium payoffs V . Schematic illustration
for the case of two senders, n = 2.

Let T̂a ∈ R+ satisfy

δTc
(

1− δT̂a
)
η =

(
1− δTc

)
|v̄c − V |. (3)

Notice that T̂a is well defined as long as η > (1 − δTc)δ−Tc
∑N

n=1 vi, which, in light of our
choice of δ and Tc(δ), is verified for δ high enough. Define Ta , bT̂ac+1, and let 0 ≤ r(v̄c) < η
solve

1− δ
1− δTc+Ta

(
Tc∑
t=1

δt−1v(at) +
Tc+Ta−1∑
t=Tc+1

δt−1Va(v̄c) + δTc+Ta−1 (V − λ(v̄c)r(v̄c))

)
= V,

The adjustment phase lasts Ta periods. In the first Ta − 1 periods, the possibly random
action aa ∈ ∆A is played with Va(v̄c) = Ev (aa). In the last period, the possibly random
action ar ∈ ∆A is played with V − λ(v̄c)r (vc) = Ev (ar).

If the receiver ever deviated, then (µ∗, α∗) prescribes the senders to babble; that is, to
send messages irrespectively of their individual states, and the receiver to play an action
that is optimal given no information.

As for the deviation of each sender, because individual states are correlated, some devia-
tions during the communication phase are detectable as they lead to an inconsistent sequence
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of messages. During the communication phase, whenever the current messages mt are incon-
sistent with the messages from the previous period mt−1 the receiver plays a after replacing
the reports with an artificially generated state ω̂ ∈ Ω consistent with the previous messages
and the underlying Markov chain. The strategy µ∗ prescribes each sender to keep playing
according to µ1 after any detected deviation of another sender, and if she ever privately
deviated.

Finally, transitions between and within blocks are as follows. Each block starts with
a communication phase that lasts for Tc periods and is followed by the adjustment phase,
which lasts for Ta periods according to (3). At period Ta + 1, a new block starts and the
timer is reset to t = 1.

Payoffs By construction, the equilibrium strategies deliver expected continuation payoffs
V to the senders at the beginning of each block and, in particular, at the beginning of the
game. We show that for sufficiently high δ, the equilibrium strategies deliver the expected
continuation payoff within ε of the target payoff U to the receiver after any public history.

First, we show that the expected continuation payoff of the receiver is within ε of the
target payoff U at the beginning of each block. Consider the average realized payoffs within
each block at the end of communication and adjustments phases:

ūc ,
1− δ

1− δTc

Tc∑
t=1

δt−1u (at, ωt) ,

ūa ,
1− δ

1− δTc+Ta

Tc+Ta∑
t=1

δt−1u (at, ωt) ,

so that ūc, ūa ∈ projn+1F
∗ and U = Ep[ūc].

We can bound the difference between ūa and ūc as follows:

ūa − ūc =
δTc
(
1− δTa

)
1− δTc+Ta

(
1− δ

1− δTa

Tc+Ta∑
t=Tc+1

δt−Tc−1u (at, ωt)− ūc

)
,

|ūa − ūc| ≤
δTc
(
1− δTa

)
1− δTc+Ta

u ≤
δTc
(

1− δT̂a+1
)

1− δTc+T̂a+1
u =

δ|v̄c − V |+ o(1)η

δ|v̄c − V |+ η + o(1)η
u (4)

where o(1) is a function converging to 0 as δ → 1, and the second inequality follows by (3)
and the fact that δTc → 1 as δ → 1.

By construction Ep [v̄c] = V ∗ = V . We now argue that as δ goes to 1, the difference
|vc − V | converges in probability to 0 independently of the starting distribution. Fix a
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sender i ∈ N . First, by the ergodic theorem, for any starting distribution π ∈ ∆(Ω),

Prπ

[
lim
T→∞

1

T

T∑
t=1

vi(a(ωt)) =
∑
ω∈Ω

p(ω)vi(a(ω))

]
= 1,

Second, for any sequence of states {ωt}T−1
t=0∣∣∣∣∣ 1− δ

1− δT
T∑
t=1

δt−1vi(a(ωt))−
1

T

T∑
t=1

vi(a(ωt))

∣∣∣∣∣ < max

{∣∣∣∣∣T 1− δ
1− δT

− 1

∣∣∣∣∣ ,
∣∣∣∣∣T 1− δ

1− δT
δT−1 − 1

∣∣∣∣∣
}
vi.

(5)

Using the fact δTc(δ) → 1 and Tc (δ) → ∞ as δ → 1, one can show that the right-hand
side of (5) converges to 0 as δ → 1. Combining these two observations, by (4) it follows that
for any ε, for δ sufficiently large, Prπ [|ūc − ūa| > ε] < 1− ε.

Consequently, because the receiver’s stage payoffs are bounded, and Tc (δ) → ∞ as
δ → 1, Eπ [|ua − uc|]→ 0 as δ → 1, where π ∈ ∆(Ω) is the belief held by the receiver at the
beginning of the block. On the other hand, by the ergodic theorem Eπ [uc]→ U .

We conclude the section by showing the receiver’s expected continuation payoff after any
public history is close to U . Since the equilibrium play is reset in every block, it suffices to
show that (i) the contribution of a single block to the total payoff is negligible and (ii) the
impact of current beliefs on payoffs in future blocks is negligible.

For (i), observe that by (3)

(1− δTa−1)η ≤
1− δTc

δTc
|v̄c − V | ≤

1− δTc

δTc
N max

i∈N
v̄i.

Consequently, δTa−1 → 1 as δ → 1 and δTc → 1, so the contribution of a single block,
weighted by 1− δTc+Ta+1, goes to 0 as δ → 1.

For (ii), observe that from before, as δ → 1, Eπ[ūa] converges in expectation to U for any
starting belief π.

Incentives We now check players’ incentives to follow the suggested strategies (π∗, α∗);
that is, that they are sequentially rational. Consider senders’ incentives. Because babbling
is an equilibrium of the stage game, the off-path behavior is sequentially rational. Also, since
the senders’ expected continuation payoffs are independent of their messages, they have no
incentives to deviate. Thus, π1 is sequentially rational.

We consider now the receiver’s incentives. Let a : ∆(Ω)→ A be the action that maximizes
the receiver’s expected payoff in the stage game for any given distribution over Ω, i.e.,

a(π) ∈ arg max
a∈A

∑
ω∈Ω

π(ω)u(a, ω).

15



Define the map φ : ∆(Ω) → ∆(Ω) as φ(π)(ω) :=
∑

ω′∈Ω π(ω′)k (ω | ω′). The map de-
scribes how the belief of the receiver evolves in the absence of information.

The receiver’s continuation payoff following a deviation at time t equals

Eπt

[
(1− δ)

∞∑
τ=1

δτu
(
a
(
φ(τ) (πt)

)
, ωt+τ

)]
,

where πt is the receiver’s belief at the end of period t.
Since the Markov chain is aperiodic, for any πt, limτ→∞ φ

(τ) (πt) = p. Hence, for any ε
and any πt ∈ ∆(Ω) ∣∣∣∣∣Eπt

[
(1− δ)

∞∑
τ=1

δτu
(
a
(
φ(τ) (πt)

)
, ωt+τ

)]
− U

∣∣∣∣∣ < ε,

provided δ is high enough.
In words, the receiver can benefit from the current information only in the short run.

In particular, the receiver’s continuation payoff following a deviation can be taken to be
arbitrarily close to U as δ → 1.

As we showed before, the equilibrium expected continuation payoff after any history
is in the neighborhood of U . Since U ∈ F ∗∗, U > U . Hence, the receiver is willing to
obey if sufficiently patient facing the threat of switching to babbling. It follows that α1 is
sequentially rational.

To complete the proof, we specify the system of beliefs. Bayes rule uniquely pins down
players’ belief, unless a sequence of inconsistent messages are reported. Recall that when
the current messages mt are inconsistent with the messages from the previous period mt−1,
the receiver takes action a (ω̂), where ω̂ is an artificially generated state. At these histories,
the receiver updates his belief according to Bayes rule as if the reported state was ω̂. The
belief of the deviator is computed by Bayes rule. The belief of any other sender i equals the
posterior belief based only on her private information ωti .
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